• Jun 16, 2017 News!Vol.6, No.3 has been indexed by EI (Inspec).   [Click]
  • Jun 15, 2017 News!Vol.6, No.2 has been indexed by EI (Inspec).   [Click]
  • Jun 14, 2017 News!Vol.6, No.1 has been indexed by EI (Inspec).   [Click]
General Information
Editor-in-chief

 
Faculty of Science, University of Brunei Darussalam, Brunei Darussalam   
" It is a great honor to serve as the editor-in-chief of IJIEE. I'll work together with the editorial team. Hopefully, IJIEE will be recognized among the readers in the related field."
IJIEE 2015 Vol.5(3): 180-183 ISSN: 2010-3719
DOI: 10.7763/IJIEE.2015.V5.526

Artifacts Removal of EEG Signals Using Nonlinear Adaptive Autoregressive

Arjon Turnip and Iwan R. Setiawan
Abstract— Analysis of EEG activity usually raises the problem of differentiating between genuine EEG activity and that which is introduced through a variety of external influence. These artifacts may affect the outcome of the EEG recording. In this paper, the Nonlinear Autoregressive (NAR) algorithm for artifacts removal of EEG signals in connection with the choice of the model structure (order) and computation of the system coefficients is proposed. The proposed method was tested in real EEG records acquired from eight subjects. The experimental result show that the proposed method can effectively remove the artifacts from all subjects.

Index Terms— Artifacts, nonliniear adaptive autoregressive, EEG.

The authors are with the Technical Implementation Unit for Instrumentation Development, Indonesian Institute of Sciences, Bandung, Indonesia (e-mail: arjon.turnip@lipi.go.id, iwan_r_setiawan@yahoo.com).

[PDF]

Cite: Arjon Turnip and Iwan R. Setiawan, " Artifacts Removal of EEG Signals Using Nonlinear Adaptive Autoregressive," International Journal of Information and Electronics Engineering vol. 5, no. 3, pp. 180-183, 2015.

Copyright © 2008-2016. International Journal of Information and Electronics Engineering. All rights reserved.
E-mail: ijiee@ejournal.net