• Mar 31, 2016 News!Vol.5, No.5 has been indexed by EI (Inspec).   [Click]
  • Aug 02, 2016 News!IJIEE Vol. 6, No. 4 issue has been published online! 10 papers which cover 3 specific areas are published in this issue.   [Click]
  • May 10, 2016 News!Papers published in Vol.6, No.3 have all received dois from Crossref.
General Information
Editor-in-chief

 
Faculty of Science, University of Brunei Darussalam, Brunei Darussalam   
" It is a great honor to serve as the editor-in-chief of IJIEE. I'll work together with the editorial team. Hopefully, IJIEE will be recognized among the readers in the related field."
IJIEE 2015 Vol.5(4): 286-294 ISSN: 2010-3719
DOI: 10.7763/IJIEE.2015.V5.546

Controlling a Humanoid Robot Arm for Grasping and Manipulating a Moving Object without Cameras

Ali Chaabaani, Mohamed Sahbi Bellamine, and Moncef Gasmi
Abstract— Many of researchers working on robotic grasping tasks assume a stationary or fixed object, others have focused on dynamic moving objects using cameras to record images of the moving object and then they treated their images to estimate the position to grasp it. This method is quite difficult, requiring a lot of computing, image processing… Hence, it should be sought more simple handling method. Moreover, the majorities of robotic arms available for humanoid applications are complex to control and yet expensive. In this paper, we are going to detail the requirements to manupilating a humanoid robot arm with 7 degree-of-freedom to grasp and handle any moving objects in the 3-D environment in the presence or not of obstacles and without using the cameras. We used the OpenRAVE simulation environment and a robot arm equipped with the Barrett hand. We also describe a randomized planning algorithm capable of planning. This algorithm is an extension of RRT-JT that interleaves exploration using a Rapidly-exploring Random Tree with exploitation using Jacobian-based gradient descent to control a 7-DoF WAM robotic arm to avoid the obstacles, track a moving object, and grasp planning. We present results in which a moving mug is tracked, stably grasped with a maximum rate of success in a reasonable time and picked up by the Barret hand to a desired position.

Index Terms— Grasping, moving object, trajectory planning, robot hand, obstacles.

The authors are with the National Institute of Applied Sciences and Technology (INSAT), Tunisia (e-mail: chaabani.ali@gmail.com, aroussia@insat.rnu.tn, mcfgsm@yahoo.fr).

[PDF]

Cite: Ali Chaabaani, Mohamed Sahbi Bellamine, and Moncef Gasmi, " Controlling a Humanoid Robot Arm for Grasping and Manipulating a Moving Object without Cameras," International Journal of Information and Electronics Engineering vol. 5, no. 4, pp. 286-294, 2015.

Copyright © 2008-2016. International Journal of Information and Electronics Engineering. All rights reserved.
E-mail: ijiee@ejournal.net