
  

  
Abstract—Linear transforms are one of the most commonly 

used methods to speaker adaptation. In this paper, we present a 
combinational method of Bayesian framework and maximum 
likelihood linear regression as well as discriminative method for 
speaker adaptation. Furthermore significant gains can be 
obtained using discriminative training for acoustic models. 
Experiments on supervised adaptation on Persian data show 
that the combinational method outperforms both Maximum 
likelihood linear regression and Bayesian framework. Also the 
proposed method with discriminative adaptation outperforms 
previously proposed methods for transform estimation and 
discriminative training outperforms ML training. 
 

Index Terms—Discriminative linear transforms, 
maximum-a-posterior adaptation, maximum likelihood linear 
regression adaptation, speech recognition, speaker adaptation.  
 

I. INTRODUCTION 
Speaker adaptation is an important part of automatic 

speech recognition systems. Linear transforms are widely 
used for model adaptation in HMM-based systems. MLLR is 
a popular method estimating the parameters by maximizing 
the likelihood of generating the adaptation data given the 
transformed model [1], [2]. Audio data and transcription are 
required for estimating the linear transforms. If the correct 
transcriptions are available, the adaptation operates in 
supervised mode. If there is no transcription available for 
data, the adaptation is unsupervised. In this paper we focus 
on supervised adaptation.  

Maximum likelihood (ML) criterion was used to estimate 
linear transforms. Discriminative criteria such as Maximum 
Mutual Information (MMI) and Minimum Phone Error (MPE) 
[3], [4] are commonly used to train HMM systems. Training 
models with discriminative criteria reduce Word Error Rate 
(WER) significantly [5], [6]. Discriminative training such as 
MPE has been successfully used to train acoustic models, 
hence it is expected that this criterion is able to improve the 
estimation of the linear transforms for speaker adaptation [7]. 
In unsupervised adaptation, the performance results of 
discriminative adaptation have been limited, as these criteria 
are sensitive to errors in the hypotheses rather than the ML 
criterion. 
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In this paper acoustic models are trained with MPE 
discriminative criterion. The maximum-a-posterior (MAP) 
estimation has been proposed for robustly estimating MLLR 
transforms with small amount of adaptation data. Then 
discriminative linear transforms (DLT) are estimated to adapt 
Gaussian means. The optimization of the transform 
parameters is employed to minimize the errors on the 
adaptation data. Furthermore it is necessary to smooth the 
discriminative criteria with statistics used in ML estimation. 
The I-smoothing improve the generalization of MPE-based 
discriminative linear transform [8]. 

The rest of this paper is organized as follows. In section 2 
MLLR and maximum likelihood Bayesian framework are 
described. In section 3 the theory of MPE-based DLT 
estimation including the use of weak-sense auxiliary function 
for optimization is presented. Experiment results on Persian 
data are described in section 4. Finally a summery and 
conclusion are presented in section 5. 
 

II.  MAXIMUM-LIKELIHOOD BAYESIAN ADAPTATION 
Linear transform based speaker adaptation was initially 

investigated with ML estimation. In MLLR adaptation, the 
mean µ of the model parameters is transformed to 
speaker-adapted mean μ (s) as: 

 
( ) ( ) ( )( )s s ss b WA μ ξμ = + =       (1) 

 
where W(s)=[A(s)  b(s)] is the linear transform and ξ=[µT 1]T is 
the extended mean vector .W is a n×(n+1) matrix (n is the 
dimension of the features). The parameters of transform, W(s) 
are estimated using ML criterion, 
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where O(s) and H(s) are the observations and reference of the 
adaptation data for speaker s respectively. 

MAP adaptation [9] involves the use of prior knowledge 
about the model parameter distribution. One obvious 
drawback to MAP adaptation is that it requires more 
adaptation data to be effective compared to MLLR. In fact 
the two adaptation processes can be combined to improve 
performance by using MLLR transformed means as the 
priors for MAP adaptation. The MAP estimation can be seen 
as a Bayesian estimation: given a set of n speech feature 
vectors O=(O1,...,On ) , if H is the parameter vector to be 
estimated from O , with probability density function (pdf) 
given by f(O| H) and g is the prior pdf of H , it is possible to 
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estimate H MAP  as: 
 

arg max{ ( | ) ( )}MAP
H

f O H g HH =  

(3) 
 
where the acoustic score is marginal likelihood given as : 
 

( | ) ( | , ) ( | )MLf O H f O H W p W dWϕ= ∫  
(4) 

 
The transform prior p(W| φ ML) is a Gaussian for mean 

MLLR transforms. The MAP points estimates of ML 
transforms are obtained as: 
 

( )^
arg max{ ( | , ) ( | )}

H

MAP ML
w

W p O H W p W φ=     (5) 

 
Bayesian method yield robust estimates of ML-based 

transforms and lead to reduction in WER [10]. 
 

III. MPE CRITERION FOR DISCRIMINATIVE LINEAR 
TRANSFORMS 

MPE criterion had been proposed to evaluate the phone 
accuracy in the word context. The MPE objective function 
was defined in [8], [11]: 
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where Mw is the model corresponding to the word sequence 
w , P(w) is the probability of the word sequence w and κ is 
the acoustic scale. The RawAccuracy(w`) measures the 
number of phones correctly recognized in the sentence 
according to reference phones. Transforms estimated with 
discriminative criteria are referred to discriminative linear 
transforms (DLTs). The form of adaptation remains as 
MLLR: 
 

 ξμμ WbA s
dl

s
dl

s
dl

s )()()()(~ =+=        (7) 
 

where Wdl
(s)=[Adl

(s) bdl
(s)] is the DLT of speakers. DLTS are 

estimated using MPE criterion which can be expressed as: 
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where P(H|O(s) ,w) is the posterior probability of hypothesis 
H from speaker s and L(H,H(s)) is the loss function of H given 
the supervision H(s) measured at the phone level [11]. 

For optimization of discriminative criteria the weak-sense 
auxiliary function was proposed [8].Given the objective 
function F (λ), the weak-sense auxiliary function is defined to 
satisfy the following condition, 
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where λ is the original parameter set and λ′ is the newly 
estimated parameter. Optimizing the weak-sense auxiliary 

function doesn’t guarantee an increase in the objective 
function [8]. This auxiliary function is based on log 
likelihood of phone arc to make the optimization tractable 
according to the phone accuracy in the objective function, 
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Each sentence r consist of phone arcs q=1,...,Qr , and p(q) 

is the likelihood of arc q. The auxiliary function consists of 
three parts as: 
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γ  as defined for MPE training. γqm(t) 

is the posterior probability over time t at state j, mixture 
component m of arc q. The function f (γq MPE ) defined as 
below: 
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With calculating the differential of (11) with respect to 

each row of the linear transforms 
)(^ i

w   we have: 
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where Dm is the smoothing factor with a constant E. 
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The numerator statistics [8] to estimate MPE-based DLT had 
following forms: 
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The denominator statistics had following forms [8]: 
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The I-smoothing is used to prevent over-training and 

improve model generalization. The I-smoothing use ML 
statistics as a “prior” to smooth the discriminative statistics 
over each Gaussian component. The ML statistics are 
calculated using the numerator lattices according to the 
correct transcription. Hence, only the numerator statistics for 
MPE-based mean transform estimation are altered in [8]: 
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where γm

ml is the state occupation probability calculated by 
ML training. This prior is proportional to the likelihood of τ 
observation points. The ML statistics can be calculated using 
the numerator lattices corresponding to the correct 
transcriptions. 
 

IV. EXPERIMENTS 
The acoustic models used in experiments are 

gender-independent continuous mixture density, tied state 
cross-word triphone HMMs. The training dataset consisted 
of 250 speakers about 4 hours of data. The test set consists of 
50 speakers about 1 hour. All systems used a 39-dimensional 
MFCC frond-end with C0 energy and its first, second and 
third derivatives. The gender independent cross-word 
triphone HMMs consist of 4499 tied states. Speaker 
independent (SI) model sets were obtained using ML, MMI 
and MPE criteria. A mean transform was used in all 
experiments for supervised adaptation.  

The lattice-based framework as used in MPE training is 
employed here for estimating MPE-based DLT. Initially, 
word lattices are generated on adapted models (using 
maximum-likelihood Bayesian framework) with unigram 
language model. The lattices used were generated by the 
HTK recognition system. The numerator and denominator 
lattices were generated. Then the denominator and numerator 
phone-level lattices are created by aligning the recognized 
word lattices and correct transcription separately with a 
unigram language model. The appropriate statistics for the 
MPE-based DLT were gathered via a forward-backward pass 
through the lattice marked with the phone starting/ ending 
times. For optimization of discriminative criteria the 
I-smoothing is employed. 

The smoothing values for I-smoothing were chosen as E=2 
and τ=100. The scale factor is chosen as κ =1. 

The experimental results for ML and discriminative 
training with MMI and MPE criteria are given in Table 1. 

TABLE I: WER(%) ON PERSIAN DATA AFTER ML , MMI AND MPE TRAINING 

System
Training 

ML MMI MPE 

SI 14.05 12.32 11.85 

 

It is observed that MPE discriminative training can reduce 
the WER in comparison with ML and MMI training. MPE 
discriminative training gave 2.2% reduction in WER over 
standard ML trained model and 0.47% reduction over MMI 
discriminative trained model. The smoothing values for 
estimation of discriminative linear transforms were chosen 
same as discriminative training. 

The experimental results for different adaptation methods 
on MPE-based discriminative trained models are given in 
Table 2. Different speaker adaptation such as MLLR, MAP, 
MLLRMAP and MPE-based DLT were used for speaker 
adaptation. 
 

TANLE II :WER(%) ON PERSIAN DATA AFTER MLLR , MAP AND 
MLLRMAP ADAPTATION  

System
Adaptation WER (%) 

Testing ML MPE 

SI 

MAP 14.41 11.27 
MLLR 13.39 9.2 

MAPMLLR 12.9 8.8 
MAPMLLR+DLT 12.4 8.2 

 

It is observed that MAP estimates of ML transforms 
reduced the WER in comparison on MLLR and MAP. As it 
can be observed the MPE-based DLT with MLLRMAP gave 
a 1% reduction in WER over standard MLLR and 0.6% 
reduction over the MAPMLLR system. 

 

V. CONCLUSIONS 
This paper has investigated a combinational method of 

Bayesian framework with MLLR for speaker adaptation. 
Furthermore discriminative linear transforms had been used 
for improving the speaker adaptation results. The 
experimental results on Persian data have shown that the ML 
Bayesian framework can improve the supervised adaptation 
performance in comparison with MAP and MLLR adaptation. 
Also the discriminative linear transforms have been applied 
to MAPMLLR adaptation. Experiments illustrated that DLT 
on combinational adaptation outperform MAPMLLR in 
supervised adaptation. 
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