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Abstract—The scope of this work is research of the problem 

linear stochastic control systems with constraints. Motivation to 

solving this problem derives from the fact that there is no 

universal solution to this problem, even though stochastic 

systems with constraints are very common in practice. Defined 

control problem is solved by creating new predictive control 

method. Validity and convergence of the created method is 

tested by method of simulation at many different scenarios of 

constraints and stochastic disturbances. 

 
Index Terms—Control, stochastic, constraints, prediction. 

 

I. INTRODUCTION 

In theory, most of the real time systems by nature are 

stochastic, because of ever present disturbances and noises at 

different system variables. Because of actuators constraints, 

all real time systems contain constraints at least in input 

variables, and often in other system variables too. For 

instance, human being functions as a very complex stochastic 

system with numerous constraints. If influence of 

disturbances and measurement noises to system dynamics is 

negligible, system variables are treated as deterministic 

values, therefore such system is considered deterministic. 

Systems with at least one variable or system parameter as 

stohastic value are considered stochastic. Such systems’ 

dynamics could not be described as deterministic and 

stochastic component influence is not negligible [1]. 

Disturbance as stochastic (unpredictable) value may be 

present at one or more system variables, either at input or 

output.  Influence of measurement noise to the system 

dynamics is usually lot less effective then disturbance 

influence. Developed deterministic methods of control are 

not directly applicable to stochastic systems with constraints. 

For instance, system of automatic control with negative 

feedback successfully removes disturbance influence, but 

could not meet system constraints. Further point of interest 

will be the problem of control in linear stochastic systems 

with constraints, with negligible small measurement noise. It 

is assumed that all needed conditional variables are 

measurable or their values could be determined by some of 

estimation methods. Stohastic systems could be continuous, 

discreet or hybrid. For instance, system of control in hydro 

accumulations is continuous, while system of control supply 

goods is discreet stochastic system. The goal of control is 

always the same: control the system in accordance with given 

criteria of control with presence of disturbances and noises, 

with respect to given constraints. Control is more qualitative 
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as the influence of disturbance is more rejected or 

compensated. 

 
Fig. 1. Disturbance influence in stochastic system. 

 

II. SYSTEM CONSTRAINTS [2] 

Constraints are always present at input variables and could 

be present at state variables as well as output variables. For 

instance, regulation valve as an actuator has constructional 

constraints in regard to maximal allowed flow. In general, 

box-like constraints appear at input variables as: 

 

               
maxmin UuU                          (1) 

 

Because of own constraints of actuators dynamics and 

fluid dynamics, constraints at change rate variables appear 

as: 

maxmin UuU                      (2) 

 

Constraints at output variables and state variables could be 

qualitative and quantitative. Qualitative constraints usually 

do not emerge at input system variables. Constraints that 

could not be violated are called hard constraints. For instance, 

maximum temperature of flammable fluid are hard 

constraints. Constraints that could be violated with certain 

deviation to control quality are called soft constraints (for 

instance, reject < 5%). 

 

III. MATHEMATICAL PROBLEM FORMULATION   

The problem of control in linear stochastic system is 

usually formulated in discreet domain, in state space as: 

 

)()()()1( kEwkBukAxkx             (3) 
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DukCxky  )()(                     (4) 

 

where: 

x(k) – State variables vector 

u(k) – Input variables vector 

y(k) – Output variables vector 

w(k) – System disturbances vector 

A, B, C, D, E – Appropriate system matrix [3] 

Analysis and synthesis of automatic control system in 

stochastic systems is done within discreet domain, because 

the goal is control algorithm applicable to software 

implementation. Control goal is minimizing the cost function 

J(k) used to grade control quality. It is necessary at the 

beginning of each discreet time interval (t=kT) to generate 

optimal vector of control signals  )(* ku .   

 

)(minarg)(* kJku
u

                     (5) 

 

Because in every moment (t=kT) stands [1]: 

 

)(*)1()(* kukuku                 (6) 

 

derives that at the beginning of each discreet time interval 

optimal correction is calculated  )(* ku   because vector 

)1( ku  at given moment (t=kT) is known. It is assumed that 

computing time )(* ku   is a lot shorter then sampling time T. 

Stochastic disturbance of normal distribution are assumed  

f(w)  as in Figure.(2).   

 

IV. MODEL PREDICTIVE CONTROL (MPC) 

Model predictive control (MPC) means knowing 

mathematical model of the system under control. It is 

assumed that all necessary variables of the system are 

measurable or estimated. Established mathematical model is 

used in concept MPC to predict behavior of controlled 

system to a finite number of discrete time period T in advance. 

Time period Hp system behavior is predicted for is called 

prediction horizon. Within the frame of predictive control 

algorithm, appropriate cost function J(k)  is defined which 

most often means minimizing deviation of controlled 

variable in relation to referent model response, with minimal 

variation of control signal. The task of predictive control is to 

find a sequence of control signals in the predictive control 

horizon Hu which will minimize established cost function in 

respect to present constraints. To the system is applied only 

first control signal, after which new variable system 

measurement are taken for next iteration of computing 

optimal control signal. Computing optimal control sequence 

u*(k) is repeated in succession  

 

)(minarg)(* kJ
u

ku 
                        (7) 

 

Control horizon remains the same but with each new step it 

moves one step to the right (moving horizon). For one input 

and one output, cost function criteria J of standard predictive 

GPC (General Predictive Control) method has this form: 

 
Fig. 2. Stochastic disturbance with normal  f(w) and limited uniformed  fu(w) 

distribution. 
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where: 

)(kr  – Referential value 

)(ky
  – Prediction vector of output values  

ju


  –  Vector (series) of input correction 

Hw – First prediction horizon (delay) 

Hp – Prediction horizon 

Hu – Control horizon 

Idea of predictive control in its basis is simple but 

algorithm implementation is processor demanding, because 

of the minimizing cost function J complexity. Vector y


 is 

calculated by known mathematical model of the observed 

system.  

               

1,))1(),1(()(  jjkyjkufjky


(9) 

 

Referential value r is calculated as first order system 

response. Standard predictive control has several flaws 

which limit application in stochastic systems: 

- Very complex matrix estimation of the optimal 

control signal u*(k) 

- Algorithm is software demanding 

- Algorithm is hardware demanding 

- Sometimes the problem of insolvability appears 

because of mathematical model imprecision 

Most flaws of the GPC algorithm comes from the fact that 

in each time interval k calculates Hp optimal control signal, 

though only first computed signal is applied!  

Below follows new MPC method for stohastic systems with 

constraints. 

 

V. ASYMPTOTIC  PREDICTIVE METHOD (APM) 

For simplicity, concept of APM method is presented on 

one SISO (Single Input Single Output) system. 

A.  APM method idea 

Idea of APM method is that on every time interval (t=kT) 

only first optimal control signal u*(k) is calculated using cost 

function J(k), and all other prediction control signals in 

prediction horizon (Hu=Hp), are calculated based on  u(k)  as: 

 

)()()( kukujku                 (10) 

 

In respect to constraints: 
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            1)( maxmin  jujkuu        (11) 

 

Counter control correction ∆u+ is: 

 

          
maxmin )( ukuu  

               (12) 

 

Counter control correction presents the worst possible 

control correction in regard to control error, it computes as 

follows: 

 

          )1()()(   kukuku                 (13) 

 

where the counter control signal is: 
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Quadratic forms have maximum at domain border. 

Becouse of that, optimization problem (14) is very simple. 

Counter control correction )(ku   becomes the 

correction which on observed control horizon Hu generates 

the largest control error. Cost function criteria of the APM 

method is: 

  wPoP
pH

wHj

zPkjkyrkJ






2

)()(          (15)  

where: 

)( kjky 


-Output prediction at the moment kT 

r –  Given set point  value (constant) 

Hw– First prediction horizon (delay) 

Hp – Prediction horizon 

Pz –  Penalty of skipping set point values 

Po  – Penalty of violation constraints 

Pw  – Penalty of violation constrains for   

        disturbance 

Every possible control signal u(k) has unique sequence (10) 

from (Hu-1) counter control signals, one response trajectory S 

respectively. Diagram shows four concurrent prediction 

trajectories which represent prediction responses to four 

different control sequences. Trajectory S1 is according to goal 

function criteria J(k)  (15) the worst because it violates 

constraint Ymax, on a observed prediction horizon, generates 

skipping set point value Ysp penalties and significant error 

control. Trajectory S2 does not violates above constraint Ymax  

but generates skipping set point value penalties Pz. Trajectory 

S4 does not violates constraints but generates significant 

control error. Minimum cost function criteria J(k) is 

generated by trajectory S3 which represents system response 

to u*- prediction control sequence,  because on the observed 

prediction horizon does not generates penalties with 

minimum control error. Conditionally optimal control signal 

u*(k)≠uop(k) is defined numerically, by searching through 

possible control signals with satisfying control correctness.  

 

       optopt ukuu )(*                   (16) 

 

      
maxmax )1()(*)1( UkukuUku         (17) 

 

Number of searches N is defined as: 

 

   R
U

N 


 


01
2 max        (18) 

 

where is arbitrary small positive real number. 

 
Fig. 3. Working principle of APM method. 

B.  Adjusting APM method parameters 

Skipping set point value penalty Pz favors asymptotic 

approach to set point value and indirectly minimize control 

correction ∆u(k). Also, penalty Pz insures convergence of 

APM method. Depending on relation between set point and 

predicted output value in a moment k, penalty Pz is calculated 

as: 

       
 
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Weighted coefficient  Cz  adopted as: 

 

             
max

5

max

3 1010 YCY z                  (21) 

 

Violation constraint penalty Po provides drastic 

punishment of violating present constraints. Therefore APM 

favors control signal which in prediction horizon respect 

constraints Ymax and asymptotic achievement of set point 

value r.  
 

       )(12
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               (22) 

 

Weighted coefficient Co adopted as: 

 

      
zoz CCC 21010                        (23) 
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disturbances is calculated as: 

 

  max1,110 YyHiifCCP w

iu

oww     (24) 

 

if predicted output constraint violation yw is foreseen while 

maximum possible disturbance w is present. Otherwise, 

(Pw=0) is valid. Sampling period is chosen from time 

constant τ of the observed system as: 

 

                6/10/  T                        (25) 

 

APM method parameters are adjusted within the scope of 

automatic system control simulation. 

C.  Disturbance influence compensation 

Disturbance influence in stochastic systems is usually 

reduced to input. Thus the disturbance is directly introduced 

to the mathematical model so it is possible to verify predicted 

system behavior even in the case of maximum possible 

stochastic disturbance. 

Within APM method, disturbance influence is given as 

maximum possible predicted disturbance at input. Therefore 

APM method potentiates control of stochastic systems with 

respect to constraints even with the presence of maximum 

possible predicted disturbance. If controlled variable is far 

enough from marginal values, given value is reached 

asymptotically. However, if set point value is near to output 

constraints, APM method holds the values of controlled 

variable far enough from marginal values that not even 

eventual maximal disturbance could not cause violation 

constraints, as in Fig. 5. Depending upon adopted maximal 

disturbance wmax two approaches are possible: pessimistic 

and optimistic. Pessimistic approach is adopting higher 

values wmax to respect constraints and in case of unlikely, 

extreme disturbances. Optimistic approach is adopting lower 

values wmax to insure respect to present constraints in case of 

the most expected but not extreme disturbances. Pessimistic 

approach is stiff and often unacceptable because it endangers 

control correctness. Value wmax is adopted upon distribution 

diagram of expected disturbance w. Voluminous simulation 

controls based on APM method confirmed convergence and 

validity of created solutions.  

Example 1: 

Given control task: positioning the vehicle while limited 

stochastic disturbances are imposed (wind) w and friction Ft  

as in Figure (4). Limitations on input u(k) and output x(k) are 

in effect: 

 

1)(1  ku                             (26) 

 

1)(1  ku                           (27) 

 

       10)(0  kx                            (28) 

 

Mathematical model of the system is: 

 

w
m

u
m

x
m

x
11

 


                   (29) 

 

where: 

x – Vehicle position (output – controlled variable) 

u - Input (force as control variable)  

m – Vehicle mass (m=1 kg) 

µ - Friction coefficient (µ=1 kg/s) 

w- Normal distribution stochastic disturbance 

 
Fig. 4. Vehicle position control. 

Acquired second order differential equation could be 

transformed to the system of two first order differential 

equation in state space. After exchange:    xv    derives: 

 

vx                               (30) 
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

                    (31) 

 

Using adopted values (m=μ=1), and sampling time 

(T=0.5s) acquired system of differential equations could be 

translated to discreet domain as a system of two differential 

equations in state space:                                          

(32) 

 

)(5.0)(5.0)(5.0)1(

)(5.0)()1(
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with given the maximal disturbance (wmaxx=0.5 Umax). 

Table I shows partial control simulation results of 

observed stochastic system. Fig. 5 shows dynamic behavior 

of the system in 20 s interval with variable set point position r. 

Though intensive stochastic disturbance of the maximal 

amplitude wmax is present, controlled output variable remains 

within given range. 

 

Fig. 5. Positioning the vehicle with present disturbance by  

applying APM method. 

TABLE I: APM METHOD SIMULATION RESULTS 
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 k u(k) v(k) x(k) w(k) r(k) 

1 1,00 0,00 0,00 0,00 5 

2 1,00 0,25 0,00 -0,50 5 

3 1,00 0,94 0,13 0,50 5 

4 1,00 1,45 0,59 0,50 5 

5 1,00 1,34 1,32 -0,50 5 

6 1,00 1,25 1,99 -0,50 5 

7 0,74 1,69 2,62 0,50 5 

8 -0,26 1,89 3,46 0,50 5 

9 -1,00 1,04 4,41 -0,50 5 

10 -1,00 0,53 4,93 0,50 5 

11 -0,88 0,15 5,19 0,50 5 

12 0,12 -0,58 5,26 -0,50 5 

13 0,56 -0,13 4,97 0,50 5 

14 -0,44 0,44 4,91 0,50 5 

15 0,00 -0,14 5,13 -0,50 5 

16 1,00 -0,36 5,05 -0,50 5 

17 0,00 0,48 4,88 0,50 5 

18 -1,00 0,61 5,12 0,50 5 

19 0,00 -0,29 5,42 -0,50 5 

20 1,00 0,03 5,28 0,50 10 

 

VI. CONCLUSION 

Advantages of APM method over GPC method are: 

simplicity and compactness, modest hardware and software 

demands, solvability and convergence. 

Disadvantages of APM method are: limited application to 

linear systems (with or without delay time) and algorithm 

complexity in regard to control multivariable systems. 

As most of the real time objects could be approximated as 

second order system (with or without delay time), APM 

method presents efficient tool to solving a control problem of 

linear stochastic and deterministic systems with or without 

constraints. 
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