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Abstract—The following problem is very classical in motion 

planning: Let a and b be two vertices of a polygon and P (Q, 

respectively) be the polyline formed by vertices of the polygon 

from a to b (from b to a, respectively) in counterclockwise order. 

We find the Euclidean shortest path in the polygon between a 

and b. In this paper, an efficient algorithm based  on 

incremental convex hulls is presented. Under some assumption, 

the shortest path consists of some extreme vertices of the convex 

hulls of subpolylines of P (Q, respectively), first to start  from a, 

advancing by vertices of P, then by vertices of Q, alternating 

until the vertex b is reached. Each such convex hull is delivered 

from the incremental convex hull algorithm for a subpolyline of 

P (Q, respectively) just before reaching Q (P, respectively). 

Unlike known algorithms, our algorithm does not rely upon 

triangulation and graph theory. The algorithm is  implemented 

by a C code then is illustrated by some numerical examples. 

Therefore, incremental convex hull is an orientation to 

determine the shortest path. This approach provides a 

contribution to the solution of the open question raised by J. S. 

B. Mitchell in J. R. Sack and J. Urrutia, eds, Handbook of 

Computational Geometry, Elsevier Science B. V., 2000, p. 642. 

 
Index Terms—Motion planning, Euclidean shortest path,  

convex hull algorithm, convex hull.  

 

I. INTRODUCTION 

The problem to determine the Euclidean shortest path 

between two points in a simple polygon is very classical in 

motion planning. To date, all methods for solving this 

problem, as presented in [1], [2], [3], etc, rely on starting with 

a rather complicated, but linear-time triangulation of a simple 

polygon. This leads to the open question below raised by J. S. 

B. Mitchell in [3]: “Can one devise a simple O(n) time 

algorithm for computing the shortest path between two points 

in a simple polygon (with n vertices), without resorting to a 

(complicated) linear-time triangulation algorithm?”. 

In 1987, the Steiner's problem of finding the inpolygon of 

a given convex polygon with minimal circumference was 

solved completely by the method of orienting curves [4]. In 

2008, the method was used to determine the convex hull of  a 

finite set of points in the plane [5]. Efficient algorithms for 
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determining convex ropes in robotics (for determining 

convex hulls, respectively) were introduced in [6] and [7] 

([8], respectively). These problems are variations of the 

shortest path problem and thus can be solved without 

resorting to a linear-time triangulation algorithm and without 

resorting to graph theory.  

Geometrically, we determine the shortest path connecting 

two points a and b that avoids the obstacles - polylines P and 

Q. Assume without loss of generality that a and b are the first 

and the final vertices of P and Q, respectively. In this paper, 

an O(|P||Q|) time algorithm for determining  the shortest path, 

without resorting to a linear-time triangulation algorithm and 

without resorting to graph theory, is presented, using the 

method of incremental convex hull, where |P| (|Q|, 

respectively) is the number of vertices of P (Q, respectively). 

Under an assumption on links to P and Q, the shortest path 

consists of the extreme vertices of the convex hulls 

downward, first advancing on one convex hull formed by 

vertices of P including a, then on the other formed by vertices 

of Q, alternating until the vertex b is reached. Each such 

convex hull is delivered from the incremental convex hull 

algorithm for a subpolyline of P (Q, respectively) just before 

reaching Q (P, respectively). Therefore, incremental convex 

hull is an orientation to determine   the shortest path. The 

algorithm is implemented by a C code and is illustrated by 

some numerical examples. This paper also provides a 

contribution to the solution of the Mitchell's open question 

above. 

 
Fig. 1. A simple polygon (shaded) is represented by a counterclockwise 

polylines P and clockwise Q. Z is the shortest path between a and b (see Fig. 

4 and Fig. 5 to know how to find  Z). 

 

II.   PRELIMINARIES 

For a simple polyline X=<u0,u1,...,ul>, [u0,u1] is called the 

first edge, u0 and ul are called the first and the final vertex of 

the polyline X, respectively.  If i≤ j then we say ui  is before uj 

(uj is after ui) in the polyline X. ui+1 (u+, respectively) is the 

next vertex of ui (u, respectively) and   ui-1 (u-, respectively) is 

the previous vertex of ui (u, respectively). u is an extreme 

vertex of the convex set M if u[p,q]M implies u=p or u=q. 
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A simple polygon is represented by two polylines of vertices 

P and Q such that the first vertices (final vertices, 

respectively) of P and Q coincide. Two adjacent vertices 

define an edge of the polygon. Assume that the polygon is 

given in an orientation as follows: the interior of the polygon 

lies to the right (left, respectively) as the edges are traversed 

in the given order of P (Q, respectively) (see Fig. 1). Then we 

say P (Q, respectively) is a counterclockwise (clockwise, 

respectively) polyline. Assume without loss of generality that 

a and b respectively are the first and the final of P and Q. 

Henceforth, PQ denotes the polygon. We can say that the 

polygon is formed by polylines P and Q at their first and final 

vertices a and b, respectively.  Furthermore, we assume that 

the vertices ui of PQ are supposed to be in general position 

(no three collinear).  

 

Many algorithms for determining the convex hull of the 

polyline X=<u0,u1,...,ul>  use a basic incremental strategy. At 

the j-th stage, they have constructed the convex hull Hj-1

 

of 

the first i vertices u0,u1,...,uj-1

 

of X, incrementally add the next 

vertex uj, and then compute the next convex hull Hj  (see [9]). 

Most convex hull algorithms construct Hj from Hj-1 in a 

similar manner. Namely, they find the right and left tangents 

from uj to Hj-1, say [uj,u
R

j] and [uj,u
L

j], respectively and use 

these as new edges for Hj in case  uj∉ Hj-1. From now, uL
j (u

R
j, 

respectively) is labelled ūj if X is counterclockwise 

(clockwise, respectively) and we will use the phrase “convex 

hull” to mean “the set of extreme points of the convex hull”.

 

Many algorithms for determining the convex hull of the 

polyline X=<u0,u1,...,ul>  use a basic incremental strategy. At 

the j-th stage, they have constructed the convex hull Hj-1

 

of 

the first i vertices u0,u1,...,uj-1

 

of X, incrementally add the next 

vertex uj, and then compute the next convex hull Hj  (see [9]). 

Most convex hull algorithms construct Hj from Hj-1 in a 

similar manner. Namely, they find the  right and left tangents 

from uj to Hj-1, say [uj,u
R

j] and [uj,u
L

j], respectively and use 

these as new edges for Hj in case  ujHj-1. From now, uL
j (u

R
j, 

respectively) is labelled ūj if X is counterclockwise 

(clockwise, respectively) and we will use the phrase “convex 

hull” to mean “the set of extreme points of the convex hull”.

 

If there is no vertex of Y in Hj-1 and there is some vertex vj1

 

of Y in Hj\Hj-1 (see Fig. 3) then convX is said  to be  firstly 

intersected by  vj1Y between vertices  uj-1 and uj (for short, 

convX is firstly  intersected by Y between uj-1 and uj). Hence, 

there is at least the vertex vj1 of Y trapped in the domain 

bounded by rays uju
L

j, uju
R

j and the path formed by the 

convex hull Hj-1 (before pushing uj on it). Let Y* be the set 

(polyline) of vertices in the domain bounded by rays uju
L

j , 

ujuj-1 and the path formed by the convex hull Hj-1 (Y* follows 

the order of Y). Let u* be a vertex of the polyline (formed by 

Hj-1) from  uL
j to uR

j  (denoted by X*)  and   v*Y*   such  that 

apart  from  u*, all  vertices  of  X*  are  left   (right, 

respectively) to the line u*v*. In addition, if there is no vertex 

of Y* inside the shaded area F(u*,X*,Y*) formed by the rays 

u*v*, uj-1uj and the subpolyline <u*,u*+,...,uR
j> of  X* then 

[u*,v*] is called a  link to X* and Y*. [u*,v*] is also called a  

link to X and Y. u* and v* are referred to as  link points. 

 

We assume that Y is a clockwise (counterclockwise, 

respectively) polyline forming a simple polyline such that 

this polyline does not intersect the polyline formed by X and 

the final vertices of X and Y coincide.  

If there is no vertex of Y in Hj  for all i≤ j (see Fig. 2) then 

convX is said to be  not  intersected by Y before or at the 

vertex uj. 

We define the counterclockwise (clockwise, respectively) 

tangent polyline
 
TP(X) of the counterclockwise (clockwise, 

respectively) polyline X. TP(X) is a stack and it allows one to 

"push" or "pop" on the top of the tangent polyline during the 

incremental strategy in finding the convex hull of  X. 

1)
 
Firstly, TP(X)=<u0,u1>.  

2)
 
Let the left tangent (right tangent, respectively) from uj

 

to Hj-1 be [uj,ūj] (2≤ j). For each uj, if convX is not 

intersected by Y before or at uj then vertices of TP(X) 

after ūj are popped and uj is pushed on  TP(X).
 

3)
 
For some vertex uj

 
of X, convX is firstly intersected by Y

 

between uj-1 and uj. Let the link to X* and Y* be [u*,v*] 

(to find such link will be presented in Section 3.1). Then, 

all vertices
 
of TP(X) after u* are popped (i.e., if ūj= uL

j
 

(ūj=uR
j, respectively) all vertices of the tangent polyline 

between uR
j (u

L
j, respectively)  and u* are popped  and 

therefore u* is the final vertex of TP(X). 
 

Assume that u0 TP(X). For simplicity, we consider the 

left tangents, counterclockwise X and  clockwise Y case only. 

The right tangents, clockwise X and counter clockwise Y case 

is considered similarly. The first vertex u0
 
of X is an extreme 

point of  convX. In Fig. 1, [p2,p4] is the link to X=P and Y=Q, 

[q7,p7] is the link to X=<q4,...,q10> and Y=<p2,...,p9> (q10=p9). 
 

 

Fig. 2. Conv X is not intersected by Y before or at the vertex uj. 

 

III. THE ALGORITHM 

We denote |X| the number of vertices of X and <xX> the 

polyline delivered from a vertex x and a polyline X (x may not 

belong to X) such that x is before every vertex of X. For x in X, 

Xx is delivered from X by discarding vertices before x. 

Therefore, if X=<u0,u1,...,ul> then Xui=<ui, ui+1,...,ul> and 

<xXui>=<x,ui ui+1,...,ul>. We need the following procedure.  

 

Given counterclockwise polyline X=<u0,u1,...,ul> and 

clockwise polyline  Y such that the final vertex ul
 of X and the 

final vertex of Y coincide and  u0  is an extreme point of  

convX.  TPL(X, Y)  finds the   tangent polyline TP(X) and the 

link [u*,v*] to X and Y, where u* (v*, respectively)  is the  

link point of the polyline X  (Y, respectively). It takes |X||Y| 

time. 
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Fig. 3.  Hj=convX is firstly intersected by Y between uj-1 and uj, vj    Hj\Hj-1. 

[u*,v*] is a link to X* and Y* and is called the link to X  and Y. 

 

We begin at u0. At any given stage of the incremental 

strategy given in Sec. II for determining the convex hull of X, 

we step along X, examining vertices uj of the polyline in the 

order they appear along the polyline. Vertices ūj=uL
j and uj 

defined by the left tangents are pushed on the tangent 

polyline TP(X). 

The tangent polyline TP(X) is determined by Section 2.2 a), 

b) and c)), where convX is firstly intersected by vj1 in Y 

between vertices uj-1 and uj (see Fig. 3). To do so, we 

determine if there is some vertex of Y inside the triangle ūj uj 
uj-1 or on [uj ūj] which takes |Y| time. Therefore, the 

processing necessary to determine if convX is firstly 

intersected by Y between vertices uj-1 and  uj takes |X||Y| time 

in the worst case. 

Take u* in X* and v* in Y*. Our search to find whenever 

[u*,v*] is the link to X* and Y* has to move on both X* and 

Y*. Note that there is some vertex of Y* inside F(u*,X*,Y*) 
iff there is some vertex of Y* inside the area formed by rays 

u*uj-1 and  u*v*. Then this procedure can take O(|X*||Y*|) 

time. 

Since the optimal incremental algorithm takes O(|X|) time, 

TP(X) and [u*,v*] are constructed in 

O(|X|)+O(|X||Y|)+O(|X*||Y*|) time. Hence, TPL(X,Y) takes 

O(|X||Y|) time. In fact, vertices between ūj and u* on the 

hull-so-far of X without any vertex of Y inside is maintained 

in TP(X). Moreover, if v* coincides with the final vertice ul 

of X and Y then v* and vertices of TP(X) are extreme vertices 

of convX. 

B.. .
 
Main Algorithm 

     The algorithm constructs the shortest path, Z, between a 

and b in the simple polygon PQ

 

which consists of the set of 

tangent polylines formed by vertices of 

P=<a=p0,p1,  ...,pn=b>

 

and Q=<a=q0,q1,...,qm=b>

 

(i.e., the 

set of some extreme edges of the convex hulls of subpolylines 

of P

 

and Q) and  links between these subpolylines. We also 

use Z

 

to label the polyline formed by ordered vertices of the 

path Z. Denote V

 

a subpolyline of P

 

(Q, respectively) and V'

 

a 

subpolyline of Q

 

(P, respectively). If [u*,v*] is a link to P

 

and 

Q, assume that v* in

 

TP(Vv*) for each subpolyline V

 

of P

 

(or 

Q).

 

1)
 
Begin at a=p0=q0. Set l:=0, V:=P, u*=p0 and v*=q0. 

2)
 
Call  TPL(Vu*,V'v*) to obtain the tangent polyline 

TP(Vu*) and the link [u*,v*] to Vu* and V'v*. Let Zl be 

the path formed by TP(Vu*) and <u*,v*>. If v*=b,  

then Z:=j=l
j=0Zj, STOP. Else, set l:=l+1 and  

V:=V''v*, go to step  2. 

In step 1, we choose V:=P. This selection (V:=P or V:=Q) 

is not crucial in the algorithm and does not effect the result. 

Because each tangent polyline TP(X) consists of extreme 

vertices of the convex hull convX from u0 to u*, Z is 

determined by the extreme vertices of the convex hulls 

downward, first advancing on one convex hull formed by 

vertices of P including a, then on the other formed by vertices 

of Q, alternating until the vertex b is reached (see Fig. 5). 

Example 3.1: Consider the simple polygon PQ in Fig. 1, 

where P=<a=p0,p1,p2,p3,p4,p5,p6,p7,p8,p9=b> and 

Q=<a=q0,q1,q2,q3,q4,q5,q6,q7,q8,q9,q10=b>. We find the shortest 

path, Z, between a and b in PQ.  Z is determined by left 

tangent polyline <p0,p1,p2>, right tangent polyline <q4,q6,q7>, 

left tangent polyline <p7> and 3 links [p2,q4], [q7,p7], [p7,q10]. 

Z includes the set of the extreme vertices p0,p1,p2 of the 

convex hull of <p0,p1,p2,p3,p4,p5>P, the set of the extreme 

vertices q4,q6,q7 of the convex hull of <q4,q5,q6,q7>Q, and the 

set of the extreme vertices p7,p9 of the convex hull of 

<p7,p8,p9>P (see Fig. 4). 

 

 

Fig. 4. The shortest path Z between a and b in the simple polygon PQ is 

determined by the set of  the extreme  vertices of the shaded convex hulls 

of subpolylines of  P and  Q respectively. 

C.
 

Correctness of the Algorithm 

 Lemma 3.1: Assume that Y is clockwise and at the j-th 

stage in the incremental strategy,  the convex hull Hj-1 of the 

first j vertices u0, u1,..., uj-1 of counterclockwise X is 

constructed by Section 2.1) and u0 in TP(X). Let [uj,uLj] 

([uj,uRj], respectively) be the left tanget (right tanget, 

respectively) from uj to Hj-1 and X* be the set of vertices of 

the counterclockwise convex hull Hj-1  from uLj to uRj and 

u* in X* be a link point of a link to X and Y. Assume that u*+ 

is the next vertex and u*- is the previous vertex of of u* in X* 

and Y** is the polyline of  vertices of Y belonging to the 

domain bounded by  the lines u*u*+,u*-u* and  ujuj-1. Then 

1) u* is an extreme vertex of the convex hull of 

{u*}Y**.  

2) The first edge (if viewed from u*) of the clock-wise 

convex hull of {u*}Y** is a link to X and Y. It follows 
that a link [u*,v*] is the first edge of the right tangent 
polyline (left tanget polyline, respectively) of the polyline 

<{u*}Yv*>.  

By induction, we conclude that the path, Z, delivered from 

the algorithm in Section 3.2) determines a set of tangent 

polylines of subpolyline of P and Q and links between these 

subpolylines.  
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Proposition 3.1: The path, Z, delivered from the algorithm 

in Section 3.2) determines sets of the extreme vertices of the 

convex hulls downward, first advancing on one convex hull 

formed by vertices of P including a, then on the other formed 

by vertices of Q, alternating until the vertex b is reached. 

Clearly, the number of these convex hulls is best possible. 

Theorem 3.1: The algorithm presented in Section 3.2) 

computes the shortest path between two vertices a and b in 

the simple polygon PQ in O(|P||Q|) time. 

Proof:  First, we prove that Z is the shortest path between two 
points, a and b, in the simple polygon PQ. Suppose  the 
shortest path is Z*. Take the links [u*1,v*1] and [u*2,v*2]  
corresponding to Zl and Zl+1. Then, Z* intersects with 
[u*1,v*1] and  [u*2,v*2] at some z1 and z2, respectively.  

We now consider a new polyline, Z*l, constructed by Zl 

and points z1 and z2 as follows: z1 is inserted on the first 

position and z2 is pushed on the final position of the polyline 

Zl. Thus, Z*l=<z1,v*1>Zl<u*2,z2> and therefore the 

vertices of Z*l between  z1 and  z2 are of  Zl .      

By Lemma 3.1 b), for the polyline <u*1,v*1>Zl , an  

interior angle made by a vertex and its previous and next 

vertices is less than . It follows that this property holds true 

for the polyline Z*l. Furthermore, the length of Z* between z1 

and z2 is bigger or equal the length of the path formed by the 

polyline, which is the path Z between z1 and z2 (see Fig. 5). 

Thus, the path Z* between z1 and  z2 coincides with the path Z 

between  z1 and z2 and therefore Z* coincides with Z. 

At each step of the algorithm presented in the Section 3, 

|Vu*| and |V'u*| are decreasing. In the next step, V:=V'v*. Hence, 

the algorithm only advances, never backs up, and the number 

of steps is therefore limited by the number min{|P|,|Q|}. As 

shown in Section 3.1, each step takes O(|Vu*||V'v*|) time. The 

worst case occurs when Vu*=P and V'v*=Q and therefore there 

is only one link to P and Q. This case takes O(|P||Q|) time. 

 

 
Fig.  5. The path Z* between z1 and z2 should coincide with the path formed 

by the polyline Z*l. 

 

II. IMPLEMENTATION 

The algorithm is implemented by a C code, in which the 

incremental strategy is the Melkman's convex algorithm. The 

random simple polygon PQ in case |P|+|Q|=300 vertices is 

computed by RPG's "X-Monotone" heuristic in [10] in the 

square of size 1. a (b, respectively) is the leftmost vertex, i.e. 

its x coordinate is minimum (rightmost  vertex, i.e. its x 

coordinate is maximum, respectively). The shortest path is 

presented in Fig. 6.  

 
Fig. 6. The shortest path between two vertices a and b of the polygon PQ 

with the number of random vertices being |P|+|Q|=300. 
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