
  

  
Abstract—In this paper, a new guaranteed performance state 

estimation problem for static neural networks with time- 
varying delay is investigated. A new Lyapunov-Krasovskii func- 
tional is introduced to improve the performance. Moreover, 
with the help of lower bound lemma, an upper-bound of a linear 
combination of positive functions weighted by the inverses of 
convex parameters is obtained. Two simulation examples are 
given to prove the effectiveness of the proposed theorem.  
 

Index Terms—State estimation, static neural networks, 
H-infinite performance, reciprocally convex approach, Time- 
varying delay. 
 

I. INTRODUCTION 
Neural networks have attracted considerable attention 

from academic research and industrial applications during 
the past decades. Various successful applications have been 
founded in many fields such as pattern recognition, image 
processing, optimization problems, and adaptive control. 
Time delay is widely exists in many practical systems such as 
chemical or process control systems and networked control 
systems [1]. Also, time delay may exist in neural networks 
because of their finite switching speeds and communication 
time. Since these time-delay may induce system instability 
and performance degradation, the stability analysis of 
delayed neural networks has become an important issue, and 
many results have been reported in the literature [2]-[4]. 

State estimation problem of neural network is very 
practical and theoretically important issue, which has been 
studied in recent years [5]-[7]. In many practical applications, 
the neuron states are not always measurable in the neural 
networks outputs since it may be very difficult and expensive 
to acquire all the state information of the neuron states in 
large-scale neural networks. But the state information may be 
certainly necessary for some applications such as system 
modeling and state feedback control. Therefore, in this case, 
the neuron states should be estimated by measurements, it 

 
Manuscript received August 1, 2012; revised September 3, 2012. 
This research was supported by the MKE(The Ministry of Knowledge 

Economy), Korea, under the ITRC (Information Technology Research 
Center) support program supervised by the NIPA(National IT Industry 
Promotion Agency) (NIPA-2012 -H0301-12-2002) & 
NIPA-2012-(H0301-12-1003)). This research was supported by World Class 
University program funded by the Ministry of Education, Science and 
Technology through the National Research Foundation of Korea 
(R31-10100). 

Won Il Lee is with the Department of Electrical Engineering, Pohang 
University of Science and Technology (POSTECH), Pohang, 790-784 
Republic of Korea (e-mail: wilee@ postech.ac.kr).  

PooGyeon Park is with the Division of ITCE and Department of Electrical 
Engineering, Pohang University of Science and Technology (POSTECH), 
Pohang, 790-784 Republic of Korea (e-mail: ppg@postech.ac.kr). 

proves the importance of the state estimation problem for 
neural networks. Recently, [5] proposed a guaranteed perfor- 
mance state estimator for static neural networks with time- 
varying delay.  But in the process of deriving lower bounds of 
one integral term, [5] introduced an approximation leading to 
a little conservativeness.  

In this paper, we propose a new guaranteed performance 
state estimator for delayed neural networks based on a new 
Lyapunov-Krasovskii functional. By applying [8]’s lower 
bound lemma, an improved performance is obtained.  

This paper is organized as follows. The state estimation 
problem is formulated in Section 2. Section 3 proposes a new 
guaranteed H-infinity performance state estimator for 
delayed static neural networks. In Section 4, two simulation 
examples are given to prove the effectiveness of the proposed 
theorem.   

 

II. PROBLEM FORMULATION 
Consider the delayed static neural network subject to noise 

disturbances: 
 

1 ( )( ) ( ) ) ,( ( ( ) ) : N x t Ax t f W d tx t t wJ BΣ = − + − + +     (1) 

2( ) ( ) ( ( )) ( ),y t Cx t Dx t d t B w t= + − +                          (2) 

( ) ( ),z t Hx t=                                      (3) 
( ),    [ , 0]( ) ,s sx s φ τ∈ −=                                 (4) 

 
where 1 2( )( ) [ ( ), ( )], , T n

nx t x t x tt x= ∈ R is the neuron state 

vector; ( ) my t ∈ R  is the network output measurement; 

( ) pz t ∈ R  is a linear combination of the states to be 

estimated; ( ) qw t ∈ R  is a noise disturbance belonging to 

2 )[0,L ∞ ;  1 2{ , ,, }nA diag a a a=  is a diagonal matrix with 

positive entries 0ia > ; n nW ×  is the interconnection matrices 
representing the weighting coefficients of the neurons; 

1 1 2 2( ( )) [ ( ( ), ( ( )), , ( ))]( T

n nt ff x t f t f x tx x=  is the neuron 

activation function; 1 2[ , , , ]T

nJ J J J=  is an external input 

vector; ( )sφ  is an initial condition on [ ], 0τ− , and ( )d t  is a 
time-varying delay of the system satisfying 

 
( ) ,   0 ( )0 d t d tτ μ≤ ≤ ≤ ≤ .                            (5) 

 
In this paper, we choose a state estimator for the neural 

network ( NΣ ) as 
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ˆ ˆ ˆ ˆ( ) ( ) ( ( ( )) ) [ ( ) ( ) : S x t Ax t f Wx t d t J K y t Cx tΣ = − + − + + −  
ˆ( ( ))],Dx t d t− −                                  (6) 

ˆˆ( ) ( ),z t Hx t=                                      (7) 
ˆ( ) 0,   s [ , 0],x s τ= ∈ −                                 (8) 

 
where ,  ˆ ˆ( ) ( ) pnx t z t∈ ∈R R , and K is the state estimator 
gain matrix to be determined.  

Define the errors to be ˆ( )( ) ( )e t x t x t= −  and ( ) ( )z t z t=  
ˆ( )z t− . Then the error-state system is represented by 

 

( ) ( ) ( ) ( ( )) ( ( ( ) ,: ) E e t A KC e t KDe t d t We t d tψΣ = − + − − + −

                  1 2
ˆ( ( ))) ( ) ( )Kx td t Bt B w− + − ,        (9) 

( ) ( )z t He t=                                    (10) 
 
where ˆ ˆ( ( ), ( )) ( ( ) ) ( ( ) )We t x t f Wx t J f Wx t Jψ = + − + . 
 

 Definition 1 : The error system ( EΣ ) is said to be globally 

stable with H
∞  performance γ  if, for some scalar 0γ > , 

there exists a proper state estimator  ( SΣ ) such that the 
equilibrium point of the resulting error system (9) with 

( ) 0w t ≡  is globally asymptotically stable, and  
 

22
( ) ( )z t w tγ<                                (11) 

 
Under zero-initial conditions for all nonzero 

2[ )( ) 0,w Lt ∈ ∞ , where 
2 0

( ) ( ) ( )Tt t t dtη η η
∞

= ∫ . 

Assumption 1. The neuron activation functions in (1), 
·)(if , satisfy the following Lipschitz condition 

 

,   
( ) ( )

0 (i=1,2,,   , )i i
i

x f y
x

f
l y n

x y
≤ ≤ ∈

−

−
≠ R       (12) 

 
with 1 2( , , ) 0, nL diag l l l= > . 

 

III. GUARANTEED H
∞

 PERFORMANCE STATE ESTIMATOR 

This section is dedicated to the design of a guaranteed H
∞

 
performance state estimator for the delayed static neural 
network. A delay dependent LMI based condition will be 
established. 

Theorem 1. Under Assumption 1, given positive scalars τ , 
μ , and prescribed constant 0γ > , state estimation problem 

of the delayed static neural network ( NΣ ) with guaranteed 

H
∞

 performance is solvable if there exist appropriately 

dimensioned matrices 0P > , 0 (i=1,2,3)iQ > , 0,jS >  

0 (j=1,2)jR > , Z  and two diagonal matrices 1( ,diag λΛ =  

2 , ) 0, nλ λ > , 1 2( , , ) 0, ndiag γ γ γΓ = >  such that the 
following LMIs hold 

 

2 1

2 2

0,
S R S

S S R

+
>

+

⎡ ⎤
⎢ ⎥⎣ ⎦

                  (13) 

 
11 12 1 19 110

22 2 2 1

2 2 2 2

3

1 2

88
2

9

5

0

5

1

0 2 0
* 0 2 2 0 0
* * 2 0 0 2 0 0 0 0
* * * 0 0 0 0 0 0
* * * * 0 0 0 0 0
* * * * * 2 2 0 0 0 0
* * * * * * 2 0 0 0
* * * * * * * 0
* * * * * * * *
* * * * * * * * * 2

T

T T T

S R W L P
S S R R W L D G

Q S R R
Q

R R
Z

P
I

P X

τ

τ
γ

Ω Ω Λ Ω Ω
Ω − Γ −

− − −
−

Ω
− −

− Λ +
Ω

− Ω
− +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
                                                                                 < 0,   (14) 
 

11 12 1 19 110

22 2 2 1

2 2 2 2

3

1 2

66

88
2

910

0 2 0
* 0 2 2 0 0
* * 2 0 0 2 0 0 0 0
* * * 0 0 0 0 0 0
* * * * 2 2 0 0 0 0 0
* * * * * 0 0 0 0
* * * * * * 2 0 0 0
* * * * * * * 0
* * * * * * * *
* * * * * * * * * 2

T

T T T

S R W L P
S S R R W L D G

Q S R R
Q

R R

Z
P

I
P X

τ

τ
γ

Ω Ω Λ Ω Ω
Ω − Γ −

− − −
−

− −
Ω

− Λ +
Ω

− Ω
− +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
                                                                                 < 0,   (15) 
 
where  
 

11 1 2

2 1 1

12 2 19 1 2

110

22 1 2 2 1

55 66 1 2 1 88

910 1 2

2

,   ,

 

(1 ) 2 2 2 ,

2 2 ,  (1 ) 2 ,

       ,

,

.

T T T

T

T T T

T

T T T

PA A P GC C G Q Q

S H H S R

GD S S PB GB

A P C G

Q S S S R R

R R S Z

B P B G

τ

τ τ

μ

τ μ

τ τ

Ω = − − − − + +

− + + −

Ω = − + − Ω = −

Ω = − −

Ω = − − − + + − −

Ω = Ω = − − − Ω = − − − Γ

Ω = −

 

 
In this case, a desired the state estimator gain matrix K  is 

given as 1K P G−= . 
Proof. Choose a Lyapunov-Krasovskii functional candida- 

te as   
 

1 2( )

0

3 1

0 0 0

2 1

( ( )) ( ) ( ) ( ) ( ) ( ) ( )

           ( ) ( ) ( ) ( )

          ( ) ( ) ( ) ( )

           

t tT T T

t d t t

t tT T

t t

t tT T

t t

T

t

V e t e t Pe t e s Q e s ds e s Q e s

e s Q e s ds e s S e s dsd

e s S e s dsd e s R e s dsd d

e

τ

τ τ θ

τ θ τ η θ

θ

τ θ θ η

− −

− − +

− + − +

= + +

+ +

+ +

+

∫ ∫

∫ ∫ ∫

∫ ∫ ∫ ∫ ∫
0

2

( )

( ) ( )

ˆ ˆ           ( ( ), ( )) ( ( ), ( )) .                (16)

t

t T

t d t

s R e s dsd d

We s x s Z We s x s ds

η

τ τ θ
θ η

ψ ψ

− − +

−
+

∫ ∫ ∫

∫
Calculating the time-derivative of ( ( ))V e t along the traject- 
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ories of system (1) and noting that ( )d t  satisfies (5), it yields 
 

1 2 1

1 2 2

( ( ))

ˆ( ( ( )), (

( )[ ( ) ( ) ] ( )

           2 ( ) ( ( )) 2 ( )

( ) ( ) ( ) (1 ( ( )) ( ( ))

            

( ))

 2 )

ˆ( )) (+ (( ( ),

         

T T

T T

T T

T

V e t e P Q

We t d t x t d t

e e

t P A KC A KC Q S e t

e t PKDe t d t e t P

t P B KB w t t d t Q e t d t

We x t Z We tt

τ

ψ

μ

ψ ψ

− + − + + +

− − +

− − − −

+

−

≤

− −

+

2

2 3 1 2

1

2

2

3

,

ˆ), ( )) (1 )

ˆ ˆ( ( ))) ( ( ( ))) ) )

         

( ( ( )),

            ( ( )) ( (

  ) ( ) ( )

    

( ( )[ ( )]
2

( )      ( ) ( ) ( )

T

T

T T

t T T

t t

x t

x t d t Z x t d t e Q

e Q e t e e t

e e e s d

We t d t

We t d t t e t

s

t t S Q R R

s S e s ds s S
τ

μ ψ

ψ τ τ

τ
τ τ

τ
− −

− −

− − −

− − +

−

− − −

− +

−

+

−

+

∫
0 0

21  ( ) ( )( ) ( )        .  

t

t tT T

t t
e e s dss R s Rd e e s dsd

τ

θ

τ θ τ τ
θ θ

+

− + − −
− −

∫

∫ ∫ ∫ ∫

 

(17) 
 

Using Jensen’s inequality [9], one can obtain 
 

1

( )

1 1( )

( ) ( )

1

1( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1 1
( ( ))[ ( ) ] [ ( ) ]

( ) ( )

1 1
  ( )[ ( ) ] [ ( ) ],              

( ) ( )

t T

t

t d t tT T

t t d t

t d t t d tT

t t

t tT

t d t t d t

e s S e s ds

e s S e s ds e s S e s ds

d t e s ds S e s ds
d t d t

d t e s ds S e s ds
d t d t

τ

τ

τ τ
τ

τ τ

−

−

− −

− −

− −

− −

−

= − −

≤ − −
− −

−

∫

∫ ∫

∫ ∫

∫ ∫

 

(18) 
 

2

( )

2 2( )

2

2

( ) ( )

( ) ( ) ( ) ( )

[ ( ( )) ( )] [ ( ( )) ( )]
( )

  [ ( ) ( ( ))] [ ( ) ( ( )],      
( )

t T

t

t d t tT T

t t d t

T T

T T

e s S e s ds

e s S e s ds e s S e s ds

e t d t e t S e t d t e t
d t

e t e t d t S e t e t d t
d t

τ

τ

τ

τ τ

τ
τ τ

τ

τ

−

−

− −

−

= − −

≤ − − − − − − −
−

− − − − −

∫

∫ ∫
 

(19) 
 

0

1

0 ( ) ( )

1 1( )

( )

1( )

1( ) ( )

( ) ( )

( ) ( ) ( ) ( )

  ( ) ( )

1 1
2[ ( ) ( ) ] [ ( ) ( ) ]

( ) ( )

  2[ (

t T

t

t d t t d tT T

d t t t

d t t T

t d t

t tT T

t d t t d t

T

e s R e s dsd

e s R e s dsd e s R e s dsd

e s R e s dsd

e t e s ds R e t e s ds
d t d t

e t d

τ θ

θ τ θ

τ

θ

θ θ

θ

− +

− −

− + − +

−

− −

− −

−

= − −

−

≤ − − −

− −

∫ ∫

∫ ∫ ∫ ∫

∫ ∫

∫ ∫
( )

1

( )

1

1

1
( )) ( ) ] [ ( ( ))

( )

1
  ( ) ] [ ( ) ( ( ))] [ ( )

( )

  ( ( ))] [ ( ) ( ( ))] [ ( ) ( ( ))],
( )

t d t T

t

t d t T T

t

T T

t e s ds R e t d t
d t

e s ds e t e t d t R e t
d t

e t d t e t e t d t R e t e t d t
d t

τ

τ

τ

τ

τ

−

−

−

−

− −
−

− + − −
−

− − − − − − −

∫

∫

                                (20) 

0

2

0 ( )

2 2( ) ( )

0 ( )

2( )

( ) ( )

( ) ( ) ( ) ( )

  ( ) ( )

t T

t

t d t tT T

d t t d t t

t d t T

d t t

e s R e s dsd

e s R e s dsd e s R e s dsd

e s R e s dsd

θ

τ τ

θ θ

τ τ

τ

θ

θ θ

θ

+

− −

+ − +

− − − −

−

− −

−

= − −

−

∫ ∫

∫ ∫ ∫ ∫

∫ ∫

 

2( ) ( )

( )

( )

2

2

1 1
2[ ( ) ( ( ))] [ ( )

( ) ( )

1
  ( ( ))] 2[ ( ) ( )]

( )

1
  [ ( ) ( )]

( )

   [ ( ( )) ( )] [ ( ( )) ( )]

   [
( )

t tT T

t d t t d t

t d t T T

t

t d t

t

T T

e s ds e t d t R e s ds
d t d t

e t d t e s ds e t
d t

R e s ds e t
d t

e t d t e t R e t d t e t

d t

τ

τ

τ
τ

τ
τ

τ τ

τ

τ

− −

−

−

−

−

≤ − − −

− − − − −
−

× − −
−

+ − − − − − −

−
−

∫ ∫

∫

∫

2( ( )) ( )] [ ( ( )) ( )].T Te t d t e t R e t d t e tτ τ− − − − − −

                        (21) 
 

Let us define ( ) /d tα τ=  and 
 

1
( ) { ( ( ) ( ( ) , ( ( ( )) () ))}.

1
t col e t e t d t e t d t e t

α α
λ τ

α α

−
= − −

−
− − −

 
Then, gathering the positive functions weighted by the 

inverses of the convex parameters { ,1 }α α− , or equivalently 
,/ ( ) /{ }( ( ))d t d tτ τ τ − from (19)-(21) and applying lower 

bound lemma [8] for S  satisfying (13), we have 
 

2 1

2 2

( )  0( )T
T

S R S
t

S S R
tλ λ

+
+

≥⎡ ⎤
⎢ ⎥⎣ ⎦

 

 
which produces an upper-bound as 
 

2 1

2 2

2 1

2 2

[ ( ) ( ( ))]( )[ ( ) ( ( ))]
( )

[ ( ( )) ( )]( )[ ( ( )) ( )]
( )

( ) ( ( )) ( ) ( ( ))
( ( )) ( ) ( ( )) ( ) .

T T

T T

T

T

e t e t d t S R e t e t d t
d t

e t d t e t S R e t d t e t
d t

S R Se t e t d t e t e t d t
e t d t e t e t d t e tS S R

τ

τ
τ τ

τ

τ τ

− − − + − −

− − − − + − − −
−

+− − − −≤ − − − − − − −+
⎡ ⎤⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
                        (22) 
 

By assumption 1, one can obtain that, for any 0iW e ≠ , 
 

ˆ ˆ( , ) ( ) ( )
0

ˆ
i i i i i i i i

i

i i i

W e x f W x J f W x J
l

W e W x W x

ψ + − +
≤ = ≤

−
, 

 
 where  21, ][ ,,i i iniwW ww=  is the i-th row vector of W . 
Then the following inequalities hold,  
 

ˆ ˆ0 2 ( ( ), ( )) ( ( ), ( ))

ˆ    2 ( ( ), ( )) ( ),

T

T

We t x t We t x t

We t x t LWe t

ψ ψ

ψ

≤ − Λ

+ Λ
             (23) 
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ˆ ˆ0 2 ( ( ))) ( ( ( )), ( ( )))

ˆ      2 ( ( )

( ( ( )),

( ( ( )) )) ( ( )),     ,   

T

T

x t d t We t d t x t d t

x t d t LWe t

We t d t

We t d t d t

ψ ψ

ψ

≤ − − Γ −

Γ −

− −

+ −−
 

(24) 
For any diagonal matrices 1 2( , , ) 0, ndiag λ λ λΛ = >  

and 1 2( , , ) 0, ndiag γ γ γΓ = > . 

Define 2

0
( ) ( ) ( ) ( )]  for)  ( 0[ T Tt

J t s w s w ss dz z s tγ−= >∫ . 

Then, for any non-zero  2[ )( ) 0,w Lt ∈ ∞ , 
 

0

2

0

2( ) ( ) ( ) ( )] ( )) ( (0))

 

[ ( )

      = ( ) ( ) ( )[ ( ) ( ))]( . 

T T

T

t

t T

J t s w s w s ds Ve t V e

s w s w s ds

z z s

z z s V e s

γ

γ

+− −

+−

≤ ∫

∫
  (25) 

 
From the condition (10) and (17)- (24), it can be seen that 

 
2

2

1 2 2 3 1 3 4 1 4

( ) ( )

( )[

( ) ( ) ( ( )

]

)

( ) ( ( )) ( ),

T T

T T T T

w t w t

t

z

X S

t z t V e t

d t d t tS

γ

ξ τ τ ξ

−

≤ Ω Ω Ω Ω

+

+ − Ω−Ω − Ω

                        (26) 
 
where 
 

( )

( )

( ) [ ), ),
1 1

ˆ( ) (

( ), ( ( )), ( (

( ( ),

( ( ( )

) , ( )),
( ) ( )

ˆ          ), ( ) ( ( ))), ]

        ,

,

 

T T T T

t t d t T

t d t t

T T T

t e e

e s d

t e t d t e t t

We t

We t d t

s e s ds x t
d t d t

d tx t t w

τ

ξ τ τ

ψ
τ

ψ

−

− −

− − −

−

=

−
−

∫ ∫  

                                                                                          (27) 
 

11 12 1 19

22 2 2 1

2 2 2 2

3

1 1 2

1 2

88
2

0 2 0
* 0 2 2 0 0
* * 2 0 0 2 0 0 0
* * * 0 0 0 0 0
* * * * 2 2 0 0 0 0
* * * * * 2 2 0 0 0
* * * * * * 2 0 0
* * * * * * * 0
* * * * * * * *

,

T

T

S R W L P
S S R R W L

Q S R R
Q

R R
R R

Z

Iγ

Ω Ω Λ Ω
Ω − Γ

− − −
−

Ω = − −
− −

− Λ +
Ω

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

[ ]

[ ] [ ]

11 1 2 2

1 1

12 2 19 1 2

2 1 2

2 3 1 22

3 4

        2 ,

,   ,

( ) 0 0 0 0 0 ,

1 1 1
 ,

2 2
0 0 0 0 0 0 0 0 ,  0 0 0 0 0 0 0 0 .

T T T TPA A P PKC C K P Q Q S H H

S R

PKD S S PB PKB

A KC KD I B KB

X S Q R R

I I

τ

τ

Ω = − − − − + + − +

+ −

Ω = − + − Ω = −

Ω = − + − −

= + + +

Ω = Ω =

 

(28) 
 

Since 3 1 3 4 1 4( ) ( ( ))T TS Sd t d tτ − Ω− −Ω Ω Ω  is a convex 

combination of the matrices 3 1 3

T SΩ Ω  and 4 1 4

T SΩ Ω  on ( )d t , 
it can be non-conservatively handled by two boundary LMIs: 
one for ( ) 0d t =  and the other for ( )d t τ= . Pre- and post- 

multiplying two LMIs by 1{ , , , , , , , , , }diag I I I I I I I I I PX − . 
Using following inequality for any real 0P >  and 0X >  

1 1

1

2 ( ) ( ) 0,

2 ,

PX P P X P X X P X

PX P P X

− −

−

− + = − − ≥

− ≤ − +
    (29) 

 
And applying the change of variable such that 1K P G−= , 

one can deduce the LMIs (13)-(15) imply 
2( )( ) ( )T Tz ss w sz γ−  ( ( ))) 0(s Vw e s× + <  for ( ) 0w t ≠ . 

Therefore, ( ) 0J t < from (25) for 0t > , thus (11) holds. 
 Globally asymptotically stability of the equilibrium point 

of the error system (9) with ( ) 0w t ≡  is achieved if 

( ( )) 0V e t <  holds. One can easily prove that the condition  

( ( )) 0V e t <  is guaranteed by the LMIs (13)-(15). We skip 
the specific proof due to space limitation. 

 

IV. SIMULATION EXAMPLES 
Two simulation examples are given in this section to 

illustrate the effectiveness of the developed approach. 
Example 1. Consider a delayed static neural network  ( NΣ ) 

with the following parameters: 
 

0.96 0 0
0 0.8 0
0 0 1.48

A =
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

, 
0.5 0.3 0.36
0.1 0.12 0.5
0.42 0.78 0.9

W
−

=
−

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

0.1
0.2
0.1

B =
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

, 2 0.1B = − , [ ]1 0 2C = − , 

[ ]0.5 0 1D = − , 
1 1 0
1 0 1
0 1 1

H = −
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

, 
0
0
0

J =
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
The activation function, the time varying delay, and the 

noise disturbance are taken as ( ) tanh( )f x x=  with L I= , 
( ) 0.5 0.5 cos(2.4 )d t t= +  with 1τ =  and 1.2μ = , and 
( ) 1 / (0.8 1.2 ) w t t= + for 0t > , respectively.  
Then, solving theorem 1 by resorting to the LMI solver in 

the Matlab LMI Control Toolbox, the state estimator gain 
matrix can be found as  
  

0.0728
0.1987
0.2965

K = −
−

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

 
With the optimal H

∞
 performance index 1.3705minγ = . It 

is easy to notice that this result is an improved result than 
1.6002minγ =  in [5]. Fig. 1 represents the error ( )e t  for 10 

random initial values.  
Example 2. Consider a delayed static neural network  ( NΣ ) 

with the following parameters: 
1.56 0 0

0 2.42 0
0 0 1.88

A =
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

, 
0.3 0.8 1.36

1.1 0.4 0.5
0.42 0 0.95

W
− −

= −
−

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

, 
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0.2
0.2
0.2

B =
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

, 2 0.4B = , [ ]1 0 0C = , 

 
Fig. 1. The error ( )e t  for 10 random initial value. 

 
TABLE I: COMPARISON OF THE OPTIMAL H

∞
 PERFORMANCE INDEX γ  

( ),τ μ  (0.9, 0.3) (0.9, 0.5) (0.8, 0.7) 
[5] 0.3404 0.3871 0.2883 

Theorem 1 0.3247 0.3689 0.2430 

 

[ ]2 0 0D = , 
1 0 0.5
1 0 1
0 1 1

H =
−

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

, L I= . 

 
Using Theorem 1, the optimal H

∞
 performance index 

minγ  can be derived at different ( ),τ μ , and these are 
summarized in Table 1. It is easy to see that our method can 
obtain much better minγ  than those in [5]. 

 

V. CONCLUSION 
In this paper, the guaranteed H-infinite performance state 

estimation problems is studied for delayed static neural 
networks. Based on a new Lyapunov-Krasovskii functional, 
we solved the guaranteed H-infinite performance state 
estimation problem. Moreover, with the help of [8]’s lower 
bound lemma, we could obtain an improved H-infinite 
performance results for delayed static neural networks. It is 
shown that the guaranteed H-infinite performance state 
estimator gain matrix can be found by solving LMIs.  Two 

simulation examples proved the improvement of the 
proposed theorem compared to existing one. It is worth 
noticing that the proposed theorem can be widely applicable 
in control fields such as state feedback control problems and 
large scale neural networks, and so on. 
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