Tackling Spoofing Attacks Using Broadband Access Concentrators

Bharat Joshi, D. T. V. Ramakrishna Rao, and Pavan Kurapati

Abstract—Spoofing based attacks have severe consequences and are widespread, but much of the present day Internet is ill-prepared to defend against them. To defend against spoofing effectively, devices at the edge of the Internet have a major role to play. This paper describes how one such set of devices, broadband access concentrators, can help in mitigating many of the well-known (e.g., IP spoofing and MAC spoofing) and not so well-known (e.g., PPPoE Session-ID spoofing and DHCP internal fields spoofing) types of spoofing.

Index Terms—Access concentrators, network security, spoofing.

I. INTRODUCTION

Spoofing is one entity masquerading as another. Spoofing based attacks are well-known in the Internet at least for the last two decades [1]. Although they are well-known and well understood, they continue to plague the Internet.

The spoofing based attacks are not only continuing, they are widespread [2], [3]. Spoofing was once popular in TCP SYN flood type of attacks [4]. Over time, spoofing is getting employed in various other types of attacks. Spoofing is often an integral part of various DoS (Denial of Service) attacks [2]. In the recent past, spoofing is heavily used in DDoS (Distributed Denial of Service) [3] and DRDoS (Distributed Reflection Denial of Service) [5] attacks.

Although IP based spoofing [6] (where source IP address in IP packet is spoofed) is the most popular type of spoofing, other types of spoofing also appear on the Internet:
- MAC spoofing: MAC spoofing is done by setting the source MAC address of an Ethernet frame to the MAC address belonging to a different machine [7].
- ARP spoofing: It involves sending ARP reply packets with Ethernet MAC that does not correspond to requested IP address in the ARP request packet [8].
- DNS spoofing: DNS spoofing occurs when another machine instead of the valid DNS server replies to a DNS request as if it is coming from the valid DNS server [2].
- E-mail spoofing: It involves sending an email by a user but changing the source email address such that it appears to come from another user [9].

To defend against spoofing effectively, devices at the edge of the Internet have a major role to play. The major contribution of this paper is how one such set of devices, broadband access concentrators, can help in mitigating many of the well-known (e.g., IP spoofing and MAC spoofing) and not so well-known (e.g., PPPoE Session-ID spoofing and DHCP internal fields spoofing) types of spoofing.

The rest of the paper is organized as follows. Spoofing attacks have various consequences (Section II). BACs are ideal for antispoofering because of their position in the network (Section III). After providing a background on BACs (Section IV), we discuss the spoofing challenges they face (Section V) and how they tackle those challenges (Section VI). After placing the antispoofering by BACs in the wider context by discussing related work (Section VII), we conclude (Section VIII).

II. Spoofing

Spoofing A by B is done for various purposes. Sometimes spoofing is an attack in itself. More commonly, spoofing is part of a larger attack. Here are some common reasons for spoofing:
- B seeks the privileges of A: This is the case, for example, when authentication is based on IP addresses [10].
- B intends to hide its tracks: This is often used as a method to hide the identity of B when B is involved in an attack (e.g., DoS attacks [3]).
- As an attack on A: For example, UDP flooding attack uses forged packets to try and connect the chargen UDP service to the echo UDP service at another site [11]. As another example, consider DRDoS attacks where the spoofed source IP address is the victim [5].

Depending on the type of attack in which spoofing is used, there are various consequences of the attacks:
- Unauthorized Service: Spoofing is used to steal the privileges of another user [10].
- Loss of Service on Target: Spoofing is used to cause denial of service. Often spoofing is used to attack a target, for example, by flooding. TCP SYN flood attack is a case in point [4].
- Difficult to trace the attacker: Because of spoofing, it is difficult to trace the location of real attacker in the event of an attack.
- Secondary victim: This is because of collateral damage from a spoofing attack. In some cases, spoofing may result in secondary victims. This is the case, for example, where spoofed source IP address is used as a mechanism to hide the tracks of the attacker. The primary victim may be sending...
responses to the spoofed source address (secondary victim) and in the process may overwhelm it. Consider TCP SYN Flood attack for example [4].

- **Unnecessary packets clogging the net:** This is also because of collateral damage from a spoofing attack. All spoofed packets are packets that should not have entered the network in the first place. Consequently, they pose extra burden on the networking systems which these packets cross. This is particularly relevant in some of the recent DDoS attacks [3] where spoofing is employed. The primary method of the attack is bandwidth based: flood large number of packets to a victim or to a victim network to saturate its bandwidth.

The primary method to tackle spoofing is filtering the spoofed packets. Beverly et al. [3] conducted a study to test how well the Internet filters spoofed packets. They estimate that about one quarter of the Internet is still vulnerable to spoofed packets. Beverly et al. [3] conducted a study to test how well the Internet filters spoofed packets. They estimate that about one quarter of the Internet is still vulnerable to spoofed packets. Antispoofing can be done at various locations in the Internet. Doing antispoofing at one location is not same as doing it at another location. It is important to antispoof as near as possible to the source of a spoofed packet:

- In general, as a spoofed packet further moves in its path, because of traffic aggregation, antispoofing becomes difficult and less effective (e.g., because of false positives and false negatives in identifying spoofed packets).
- It is not only important to drop spoofed packets, it is important to drop them as early as possible. This is even more important when attack is bandwidth based – flooding large number of packets to saturate the bandwidth (DDoS attacks).

Given these considerations, the devices at the edge of the network have an important role to play with regard to antispoofing. It leads to the necessity of doing antispoofing on broadband access concentrators, which are the edge points for broadband connections to consumers.

Broadband access concentrators (BAC) aggregate multiple broadband connections from end users. Examples of BACS include DSLAMs (DSL Access Multiplexers) and CMTSs (Cable Modem Termination Systems). DSLAMs terminate DSL lines, and CMTSs terminate cable connections. Although we focus on spoofing challenges faced by broadband access concentrators in this paper, many of the ideas and techniques should be applicable for other access concentrators (e.g., dialup servers that aggregate dialup lines) as well.

III. BACS ARE IDEAL FOR ANTISPOOFING

To avoid all the consequences associated with spoofing, antispoofing is very important. Antispoofing is dropping spoofed packets. Antispoofing can be done at various locations in the Internet. Doing antispoofing at one location is not same as doing it at another location. It is important to antispoof as near as possible to the source of a spoofed packet:

- In general, as a spoofed packet further moves in its path, because of traffic aggregation, antispoofing becomes difficult and less effective (e.g., because of false positives and false negatives in identifying spoofed packets).
- It is not only important to drop spoofed packets, it is important to drop them as early as possible. This is even more important when attack is bandwidth based – flooding large number of packets to saturate the bandwidth (DDoS attacks).

Given these considerations, the devices at the edge of the network have an important role to play with regard to antispoofing. It leads to the necessity of doing antispoofing on broadband access concentrators, which are the edge points for broadband connections to consumers.

Broadband access concentrators (BAC) aggregate multiple broadband connections from end users. Examples of BACs include DSLAMs (DSL Access Multiplexers) and CMTSs (Cable Modem Termination Systems). DSLAMs terminate DSL lines, and CMTSs terminate cable connections. Although we focus on spoofing challenges faced by broadband access concentrators in this paper, many of the ideas and techniques should be applicable for other access concentrators (e.g., dialup servers that aggregate dialup lines) as well.

IV. BACKGROUND ON BACS

A little background on BACs will help understand the types of spoofing that are applicable to them. Fig. 1 shows the model of a BAC. A BAC may support a large number of subscriber ports (10000 ports are not uncommon). These ports could be DSL ports on a DSLAM, for example. Different types of encapsulations are used on the subscriber ports depending on the type of call supported on the ports. Trunk ports carry subscriber packets toward Internet. Trunk ports could be Gigabit Ethernet ports, for example. When the BAC receives a packet from a subscriber port, it will route/bridge (depending on the call type) and send the packet upstream on the trunk port. Similar processing takes place in the downstream direction, when a packet is received on a trunk port. In this paper, we are concerned with antispoofering on the BAC for the packets that are received from the subscriber ports.

Spoofing arises in the context of the specific types of calls that are supported by BACs. Hence, understanding of the call types is essential.

In Ethernet aggregated access networks, a BAC acts as a transparent bridge; in IP enabled access networks, a BAC acts as a router. Various types of user calls exist in these two types of networks. This paper focuses on the following call types:

- **IPoA (IP over ATM) Routed Calls:** Fig. 2 shows a typical network for IPoA calls. User calls in the BAC are configured for routing. The BAC expects IP packets in ATM encapsulation and routes them.

IP addresses may be assigned to the subscribers in two ways: (1) Static configuration; (2) DHCP [13] (Dynamic Host Configuration Protocol). If DHCP is used, the BAC finds out the IP address assigned to subscribers while relaying the DHCP packets and adds routes accordingly.

- **Transparent Bridged Calls:** Fig. 3 shows a typical network for transparent bridged calls [14]. These calls are configured in groups. A set of calls belonging to multiple subscriber ports and a trunk port will form a bridging group, and it constitutes a broadcast domain (similar to a LAN). The Modems and the BAC are configured to bridge. The BAC will receive Ethernet packets encapsulating IP packets from subscribers and bridges them.
V. SPOOFING CHALLENGES TO BACS

In this section, we will explore the types of spoofing attempts that concern BACs. For each type of spoofing, we discuss why that spoofing concerns BAC, what calls it applies to, and what the consequences of that spoofing are.

- **IP Spoofing**: For both call types, IPoA and transparent bridged calls, the BAC receives IP packets, and so IP spoofing concerns the BAC. By modifying the source IP address, an attacker can pretend as another user. Apart from the fact that IP spoofing can affect machines that are beyond the BAC on the Internet, it may affect the BAC itself: IP spoofing involves changing source IP address for the described spoofing attacks. They are the first entry

- **MAC Spoofing**: MAC spoofing concerns the BAC for transparent bridged calls only. MAC spoofing may be used for DoS attacks on the BAC itself or on other subscribers. BACs engaged in transparent bridging do MAC learning and map the MAC address to the interface on which a message is received. ASICs (Application Specific Integrated Circuit) or network processors in the BAC send any learnt MACs down to control plane for learning. An attacker can use a special MAC address that cannot be learnt, to flood the control plane – causing DOS. For example, group MAC addresses (least significant byte of MAC address set to 1) or all 0s MAC address cannot be learnt.

In another case of spoofing, an attacker uses another subscriber’s MAC address in the source MAC field of his or her packets. This can cause the MAC address to be mapped to the wrong interface during MAC learning. When the legitimate user attempts to send traffic, it gets discarded as the same MAC address is already pointing to a different interface. Even if the rule is to overwrite the MAC table with the new interface, it can be exploited by the attacker to overwrite the MAC table continuously – thus affecting the service.

MAC spoofing can also be used in exhausting the MAC learning table. An attacker can change the source MAC address for each packet and send thousands of packets so that the MAC learning table’s limit is reached, and no other MACs can be learnt.

- **ARP Spoofing**: In ARP spoofing, an attacker generates a spoofed ARP reply message causing a host make a wrong entry of MAC address for a given IP address. All the packets destined for that IP address will end up going to the attacker. ARP spoofing concerns BACs for transparent bridged calls only. Since a set of transparent bridged calls constitute a broadcast domain, ARP spoofing is possible here just like a LAN [8]. When a subscriber sends an ARP request, the BAC floods this to uplink port and also to all the ports which are part of the same bridging group. An attacker can respond to this request with his or her MAC address and get all the packets that are destined to a different user.

- **Internal Header spoofing for control messages**: As we have seen, IP spoofing involves changing source IP address of the IP header and MAC spoofing involves changing the Source MAC of the Ethernet header. Some control protocols have MAC/IP address in their internal headers as well. Spoofing these internal fields may also lead to undesired results that can be service-affecting. Consider DHCP for example. DHCP header [13] has MAC and IP address fields at several locations. “Chaddr” field in the DHCP header points to the MAC address of the client, and “ciaddr” points to IP address of the client. Option 61, known as “Client Identifier”, may also have client’s MAC address. Servers may be configured to assign IP addresses based on Client identifier. They may also index the lease entries based on Client identifier.

Spoofing can be done by modifying any of these parameters. By modifying Client Identifier, a client can cause address exhaustion attack at the server that assigns IP addresses based on Client Identifier. A client can modify the “ciaddr” field to its neighbors address and send a DHCP RELEASE. Some server implementations release the IP address just by checking the “ciaddr” field. Also, in some implementations BACs acting as relay agents themselves maintain the lease information, and they remove these entries upon receiving a DHCP RELEASE. So, a spoofed “ciaddr” or “chaddr” can cause the entry to be removed from either the relay agent or server or both thus affecting the service.

These spoofing attempts concern both IPoA and transparent bridged calls when they use DHCP.

- **PPPoE Session-ID Spoofing**: This spoofing concerns the BAC when PPPoE [15] is used in transparent bridged calls. Since a set of transparent bridged calls exist in a bridge group, BRAS assigns a unique “Session Id” [15] to each PPPoE session to distinguish the traffic of each session (see Fig. 3).

By modifying the “Session Id”, an attacker may cause service disruption to other users. For example, the attacker can generate a terminate request (PADT) for a “Session Id” which belongs to another user. This will cause service interruption to the legitimate user.

VI. ANTISPOOFING BY BACS

This section highlights some of the antispoofing mechanisms employed at BACs to overcome the spoofing attacks described. BACs are ideally suited to do antispoofing for the described spoofing attacks. They are the first entry
points to the Internet for broadband subscribers. To a BAC, each of its subscriber’s packets are separately visible. Once they cross the BAC, traffic gets aggregated, and it makes antispoofing difficult and less effective.

For the BAC to do antispoofing, it needs information of the subscribers like IP addresses and MAC addresses to add the filters to allow only legitimate packets and drop other packets. Sometimes, this information is statically configured (e.g., IPoA calls using static configuration), then it is trivial to get the needed information. However, when DHCP or PPPoE is used for subscriber configuration, it becomes non-trivial. The BAC has to “glean” [16] the control messages of DHCP and PPPoE to get the needed information for antispoofing. It is important not only to collect this information, but also to maintain and delete it when it is no longer valid (if not, this can itself lead to an attack on BACs).

When an IPoA or transparent bridged call is using DHCP for IP address allocation, the BAC should intercept the DHCP ACK messages [13] and collect the assigned IP address, MAC address, and lease time of each subscriber. The collected information should be updated whenever a DHCP ACK is received. It should be deleted when a DHCP RELEASE is received or the lease time expires.

When a transparent bridged call is using PPPoE for IP address allocation, the BAC should intercept the PPPoE PADS message [15] and PPP IPCP messages [17] to collect the following information: Assigned IP address, MAC address, and Session-ID. The information should be deleted whenever a PADT message comes from either the subscriber or the BRAS.

A particularly insidious problem with PPPoE gleaning is what happens when a subscriber machine is reset. When a subscriber machine is reset, it generally loses information of its previous PPPoE session and establishes a new PPPoE session. How will the BAC delete the gleaned information of the previous PPPoE session?

PPPoE sessions should use keep-alives [17], and the BAC should use an idle timer to delete stale gleaned information.

As described below, the BAC will do antispoofing for the previously described attacks using information collected from static configuration or gleaning:

- **IP Antispoofing:** For each subscriber port, the BAC should add and dynamically update filters so that subscribers can send packets only with source IP addresses that are assigned to them. All other packets should be dropped.
- **MAC Antispoofing:** For each subscriber port supporting transparent bridged calls, the BAC should add and dynamically update filters so that subscribers can send packets with only combinations of (source IP address, MAC address) associated with them. All other packets should be dropped. Note that it is important to do MAC antispoofing together with IP antispoofing for transparent bridged calls.
- **ARP Antispoofing:** For each subscriber port supporting transparent bridged calls, the BAC should add and dynamically update filters such that whenever an ARP message is received from a subscriber port, the IP address and MAC address combination used in the ARP header is actually associated with that subscriber port. Otherwise, the ARP packet should be dropped.
- **Antispoofing for internal headers:** If IPoA or transparent bridged calls are using DHCP, when a DHCP RENEW or RELEASE message is received from a subscriber port, it should be checked by the BAC and made sure that “ciaddr” and “chaddr” fields match the (source IP address, MAC address) combination associated with the subscriber port. Otherwise, the message should be dropped.

To mitigate spoofing of Client Identifier in DHCP messages, RFC 3046 [18] introduced a more reliable relay agent option (Option 82). The BAC should act as a DHCP relay agent and append this option with a circuit ID or a remote ID suboption. DHCP Servers that earlier were indexing based on Client Identifier can now do the same with circuit ID or remote ID. Because relay agent option is added by the relay agent, it can be trusted by the server – thus preventing the spoofing attacks.

This solution, however, poses another challenge when a DHCP client itself adds a relay agent option and sends the DHCP message. If a client adds relay agent information option, the BAC will not be able to add its own relay agent option. This may again lead to the attacks as described for Client Identifier option. For DHCP packets containing relay agent information option already present, the BAC should be configured to trust/untrust such messages per subscriber port [18]. This will ensure that the relay-agent information option is not misused by the clients.

- **PPPoE Session-ID Antispoofing:** For each subscriber port supporting transparent bridged calls, the BAC should add and dynamically update filters such that whenever a PPPoE data packet is received it should be checked to make sure that it uses the session-ID associated with the subscriber port. Otherwise, the PPPoE packet should be dropped.

VII. RELATED WORK

RFC 2827 [11] discusses ingress filtering as a general strategy to be employed on various networking devices to filter spoofed packets. In this, filtering is done by static setting of filtering lists. Static configuration has the maintenance drawback of updating the filtering lists whenever the configuration on the machine changes. RFC 3704 [20] expands on RFC 2827 and provides more techniques to do filtering. Instead of static configuration, dynamic approaches like Reverse Path Forwarding are suggested. However, these dynamic approaches suffer when routes are asymmetric. RFC 3704 also discusses problems posed by the presence of multihoming for ingress filtering of spoofed packets. RFC 3871 [21] provides deployment guidelines to Internet Service Providers to operationalize the ideas discussed in RFC 2827 and RFC 3704.

Templeton et al. [9] suggest various active and passive methods to detect spoofed packets using OS finger printing, traceroute, etc. Jin et al. [5] and Templeton et al. [9] suggest a scheme to filter spoofed packets based on hop count. In contrast to the other schemes above, which suggest filtering on routers, this scheme suggests filtering on the end point. It has the advantage that it can be deployed immediately on the needed end points where as the other techniques need to be deployed on the entire networking infrastructure, which takes time. In the long term, techniques based on routers modification should be preferred because it is prohibitive to
update the numerous end points, and it is always better to drop spoofed packets as soon as possible. The techniques suggested by [9] and [5] also suffer from false positives and false negatives; their spoofing detection is not very accurate.

ARPWATCH [22] is a utility that watches changes in IP/Ethernet mappings on an Ethernet network. If changes are detected, an admin is alerted. It helps in detecting ARP spoofing based attacks.

VIII. CONCLUSIONS

Although spoofing based attacks have severe consequences and are wide-spread, significant parts of the present day Internet are not able to deal with them. Not only to just deal with spoofing but for effective handling, have devices at the edge of the Internet had a major role to play. This paper described the role that can be played by one such device: broadband access concentrator.

BACs can help in mitigating many but not all spoofing based attacks. They can help in mitigating spoofing based on IP addresses, MAC addresses, ARP, PPPoE Session-ID, and DHCP internal fields. Although some of these spoofing based attacks are well-known (e.g., IP spoofing), others are new (e.g., PPPoE Session-ID based spoofing and DHCP internal fields spoofing). The antispoofer techniques described in this paper provide a stepping-stone towards a safer Internet.

REFERENCES

Pavan Kurapati was born in India on Nov 2nd 1978. He graduated in Electronics and communications engineering from Nagarjuna University, Andhra Pradesh, India in 2000. He is currently working with Juniper Networks as a Resident Engineer for AT&T Labs, Middletown, New Jersey. He previously worked for Infosys Technologies Ltd, Bangalore, India in the position of Senior Technical Architect. His works in international forums include RFC 6148 in IETF with title “DHCPv4 Lease Query by Relay Agent Remote ID”, “Spoofing challenges faced by Broadband Access Concentrators” at COMSNETS 09, “Strategy-based value transformation of network test automation solutions” at Quest Forum EMEA and Americas 2009 etc. Mr Kurapati is an active member of IETF working groups including dhc, mboned, pim.