



Abstract—Data encoding is widely used for a variety of

reasons. Encoding schemes in general serve to convert one form

of data to another in order to enhance the efficiency of data

storage, transmission, computation and privacy, to name just a

few. When it comes to privacy, data may be encoded to hide its

meaning from direct access or encrypted to attain a certain

security level. If the encoding scheme preserves additive and

multiplicative homomorphisms, then operations on encoded

data may be performed without prior decoding, which improves

the utility of such mechanism. We introduce a probabilistic fully

homomorphic encoding scheme that is practical as a

stand-alone entry-level solution to data privacy or as an added

component of existing encryption schemes, especially those that

are deterministic. We demonstrate how the finite segment of

p-adic numbers can be explored to derive probabilistic multiple

secret Hensel codes which yields multiple layers of obscurity in

an efficient way. Our encoding scheme is compact, ultra

lightweight and suitable for applications ranging from edge to

cloud computing. Without significant changes in its

mathematical foundation, as a proposed continuation of this

present work, further investigation can take place in order to

confirm if the same encoding scheme can be extended to be a

standalone secure instance of a fully homomorphic encryption

scheme.

Index Terms—Data encoding, p-adic numbers, g-adic

numbers, hensel code, secret Hensel codes, homomorphic

encoding.

I. INTRODUCTION

Among its many applications, encoding techniques

facilitate certain procedures with data such as storage and

traffic [1], recovery [2], compression [3]-[5], signal

processing [6], to cite a few. Classical examples of data

encoding techniques include JPEG [7], MPEG [8], ASCII [9]

and UTF-8 [10]. In this work we examine data encoding as it

relates to privacy. With the advent of newer technologies,

such as IoT and 5G wireless protocols, the volume of stored

and transmitted data is increasing exponentially. This

phenomenon affects not only their supporting infrastructure

[11] but also raises concerns about data privacy. Data

encoding has also been used to improve privacy through data

hiding techniques [12] such as steganographic encoding for

digital images [13], [14], secret error-correcting codes [15],

audio data hiding [16], grammar encoding [17], and DNA

encoding [18], [19]. It is safe to assume that data encoding

has the potential to play a relevant role in every stage of the

data life-cycle.

We are particularly interested in novel and efficient ways

by which data can be represented while offering some level

Manuscript received January 1, 2020; revised March 12, 2020.

David W. H. A. da Silva, Carlos Paz de Araujo, and Edward Chow are

with are the University of Colorado at Colorado Springs, CO 80918 USA

(e-mail: dhonorio@uccs.edu, cpazdear@uccs.edu, cchow@uccs.edu).

of secrecy. Our goal is to propose a flexible, efficient and

general purpose data encoding scheme that preserves additive

and multiplicative homomorphisms and can be either

integrated into existing encryption schemes or serve as a

single hiding technique for a variety of applications in

Engineering and Computer Science such as digital signal

processing [20], cyber physical systems [21], machine

learning [22], edge computing [23], parallel processing [24],

cloud applications [25], among others.

A. Our Contribution

We propose a probabilistic fully homomorphic encoding

mechanism based on multiple secret Hensel codes, as an

extension of the finite segment of p-adic and g-adic numbers.

The conventional Hensel code is extended in the following

ways:

1. The prime numbers involved in the Hensel encoding are

kept private which compromises the efficiency of

calculating the corresponding inverse map;

2. Multiple prime numbers are used in the g-adic setting

where random numbers are considered as part of the data

we want to encode, which gives the encoding scheme a

probabilistic nature;

3. From any given integer to be encoded, we first force the

generation of a rational number via the inverse g-adic

mapping, so secret Hensel codes are generated.

This presents a challenge in the decoding mechanism if the

prime numbers are not known. Among the possible

applications enabled by our scheme we highlight the data

encoding of existing encryption schemes, especially those

that do not possess randomization in their encryption

function. It may also be applied to functions over structured

data such as audio, video, image, signals, and in a large

variety of applications that afford a reasonable data

expansion in favor of meaningful obfuscation.

B. Related Work

Although the theory of p-adic numbers were formally

introduced in the end of the nineteenth century [26], Hensel

codes were only proposed as a theory on its own between the

late 1970s and early 1980s [27]-[33]. Since then, Hensel

codes have been applied for a variaty of purposes, including

error- free, parallel and distributed computation as seen in

[34]-[39].

As a recent example of the advantages of applying Hensel

codes in real-world solutions, Barillas demonstrated an

efficient quantization method for a new classification

approach in machine learning based on finite p-adic

arithmetic over the MNIST dataset [40]. Barillas obtained a

peformance 42 times faster and energy consumption 62 times

lower than current state-of-the-art [41]. Hensel codes has also

been recently used as an encoding component for

An Efficient Homomorphic Data Encoding with Multiple

Secret Hensel Codes

David W. H. A. da Silva, Carlos Paz de Araujo, and Edward Chow

International Journal of Information and Electronics Engineering, Vol. 10, No. 1, March 2020

5doi: 10.18178/ijiee.2020.10.1.713

mailto:dhonorio@uccs.edu
mailto:cpazdear@uccs.edu

experimental encryption schemes and related protocols

[42]-[44].

C. Preliminaries

We denote the bit length of any number as | | its. If a

random number is said to be uniformly generated and we

provide that | | its | | its , then the range of is

 | | its | | its . If we provide that | | its | | its, then

the range of is given by | | its . A set is denoted

as usual, that is * +, while an ordered list is

denoted as (). We seek to only add notation and

nomenclature in order to favor readability and

implementation.

II. HENSEL CODES

As an alternative for the application of infinite precision

integer and rational arithmetic [45], which are generally

expensive in terms of space and time consumption, Hensel

proposed the p-adic number system [26] (for p as an odd

prime number) with which one can perform calculations on

integers as a replacement of the operations on rational

numbers, which waives the need of dealing with the costs of

rational arithmetic while achieving the same results.

Krishnamurthy, Rao and Subramanian further developed the

ideas of Hensel to create a finite segment of p-adic numbers,

which they named Hensel codes, as an isomorphic map

between a specialized subset of the rational numbers and

integers over a finite field modulo p. Rao and Gregory [27]

remarked that converting an integer back into rational

number was difficult, so they proposed methods to alleviate

this problem. However, it was Miola in [33] that introduced a

general and efficient method for calculating the direct and

inverse mappings of Hensel codes.

The reader might refer to Miola in [33] for detailed

information about the unique direct and inverse maps

between a certain set of rational numbers and their

corresponding Hensel codes, which we hope will create

confidence about the correctness, efficiency in representation

and applicability of both p-adic and g-adic numbers in

modern real-world applications. Here, we rearrange the

theorems and proofs of interest in order to make our

discussion self-contained, which we hope to help the

appreciation of the fundamental notions in our contribution,

in particular, how Hensel codes can be explored to provide a

fully homomorphic data encoding scheme.

A. Extended Euclidean Algorithm

Due to its importance in the mappings between rational

numbers and integers over a finite field within the theory of

p-adic numbers, we provide a brief review on the basics of

the Extended Euclidean Algorithm (EEA) [46]. The EEA

guarantees that

gcd() gcd() gcd()

gcd() gcd()

gcd()

(1)

which means that gcd() yields the last non-zero

remainder in the sequence , , . We remark the

description provided in [47], [48], where given two

non-negative integers and , the EEA computes and

and gcd() so the following holds:

 gcd()
(2)

Within the computation of the EEA, the values for

(3)

are calculated over each iteration such that

 given

 for

 for
(4)

considering that

 ⌊

⌋

 gcd()
(5)

The property in Eq. 2 can be generalized to what is known

as a diophantine equation, and it is given by

(6)

where and are unknown integers and , and are

given integers. The solution provided in [48] when

gcd() is given by

gcd()

gcd()

(7)

where and are integers and gcd().

B. Hensel Code and Its Inverse

The isomorphic direct and inverse mappings between a

certain set of rational numbers and integers modulo is

described below.

Theorem 1: Given a rational number and , where

is an odd prime number and is an arbitrary positive integer

such that , and are pairwise relatively prime, the

Hensel code of the rational number , denoted as , is

calculated as follows:

 mod
(8)

for all and such that

| | | | ⌊√

⌋

(9)

International Journal of Information and Electronics Engineering, Vol. 10, No. 1, March 2020

6

Proof 1: The value of as in Eq. 8 can be obtained as a

solution of

 (

) mod

(10)

which can also be written as

(11)

for an integer . This equation is a diophantine equation

solvable by the EEA with solutions as in Eq. 7. In this case

we have

(12)

and the assertion follows by recalling that .
Example 1: Let and . The

Hensel code of is given by:

 mod

 mod

 mod

(13)

The intuition behind the Hensel code computation is rather

straightforward. Consider the rational number , this time

without the reduction mod :

(14)

We see that another way of representing is by writing

the integer multiplying the inverse of the integer . The

Hensel code is the same calculation modulo , which means,

according to Example 1, that we need to calculate the

modular multiplicative inverse of with respect to the prime

number .
Miola in [33] remarks that, if a Hensel code is calculated

for a particular rational number as shown in Theorem 1,

then, the EEA will be able to uniquely and correctly compute

 from .

Lemma 1: ([33]) If

|

 |

(15)

then is a convergent to .

Proof 2: The proof for the lemma is provided by Hardy et

al. in [49].

Theorem 2: ([33]) If is such that

 mod

(16)

with | | | | ⌊√

⌋ , then, since

EEA applied to and computes the convergents of ,
there exists an such that the -th convergent determines

exactly .

Proof 3: ([33]) The equation in Theorem 2 can be rewritten

as

(17)

for some , and is an approximation to with an

error of

|

|

(18)

Lemma 1 is then applied to prove that is a

convergent of and it can be computed by EEA (which

computes all the convergents). Then value can be

obtained by EEA as for the such that | | .

Example 2: Let , and . In order to

find the unique rational number for we compute the

EEA for , , , as follows:

 ⌊

⌋

 ⌊

⌋

(19)

and then we stop since ⌊√

⌋ . The answer is

then given by

()

()

(20)

We can now present Definitions 1 and 2.

Definition 1: The Hensel encode algorithm is denoted as

 (

)

(21)

for an odd prime number , an arbitrary positive integer
and some rational number such that

 | | | | ⌊√

⌋

(22)

Definition 2: The Hensel decode algorithm is denoted as

 ()

(23)

for an odd prime number , an arbitrary positive integer
and a Hensel code is given by:

let
 , , and and , then,

while

International Journal of Information and Electronics Engineering, Vol. 10, No. 1, March 2020

7

 ⌊√

⌋

(24)

is true, the following is computed:

 ⌊

⌋

(25)

So the result is given by

()

(26)

Theorem 3: For all odd prime numbers , arbitrary positive

integers and rational numbers such that

 | | | | ⌊√

⌋

(27)

given a Hensel code (), it holds that

 ((

))

(28)

Proof 4: Theorems 1 and 2 state that rational numbers

encoded as in Definition 1 have a unique and correct Hensel

code for which a Hensel decoding procedure as in Definition

2 will result in a unique and correct rational number.

Observing the conditions in Theorems 1 and 2, the mapping

between that particular set of rational numbers and their

corresponding Hensel codes is isomorphic.

C. Secret Hensel Codes

We extend the notion of Hensel code to what we call secret

Hensel code by keeping the prime number private. In the

scope of this work, we might implement secret Hensel codes

in two different ways:

 Hensel codes as a member of , where is a product of

primes;

 Hensel codes for computation without modulo reduction.

1) Secret hensel code I

Let be a rational number, be odd prime

numbers and be an arbitrary positive integer. Let be such

that

 ∏

(29)

We generate the secret Hensel code in the conventional

way, using only the first prime number of the primes

available:

 mod

(30)

without ever disclosing
 . We let , where

 is public. This means that we confine the computation with

Hensel codes in as opposed to . The conversion from

Hensel code to a rational number requires the knowledge of

 . We show next that without knowing , one cannot

uniquely and correctly recover .

Theorem 4: A secret Hensel code calculated with a prime

number that is made a member of where is the

product of primes including , cannot be uniquely solved

by the EEA.

Proof 5: Theorem 2 states that | | | | ⌊√

⌋ is required

for finding unique solutions for and . The EEA requires

knowing to compute the convergents of .
We now show that if one uses as an argument in the EEA,

replacing the private
 , the computation will not correctly

find from .

Theorem 5: Let a rational number be also an integer,

that is, , for all values of such that | | ⌊√

⌋, the

Hensel code of is equal to .
Proof 6: The proof for the theorem is implied in the

Theorem 2.

Lemma 2: If () and is a product of

prime numbers including , and is used as a replacement

of
 in the EEA in order to compute the rational number

 from the corresponding Hensel code , the following

holds

 ()
(31)

Proof 7: If ∏

 and a Hensel code

 () according to Definition 1, the following holds

 ⌊√

⌋

(32)

and according to Theorem 5, calculating the EEA for and

will result in a rational number where and ,
and therefore () .

Lemma 3: If , and
 are unknown, there are infinitely

many solutions for
 given and , where ∏

 for

 .
Proof 8: The range of a Hensel code under

 is

 . For any

 there are infinitely many

combinations of , and that will result on the same ,

since *
 + *

 +.
The only efficient method known to date for the inverse

map of Hensel codes is the slightly modified version of EEA

(in the rational solution in the end of the computation), which

we showed cannot be used for this task if is unknown. One

might be tempted to use gcd computations in an attempt to

recover , however, as remarked by Miola in [33], is

a condition for a valid Hensel code with respect to . By its

nature, a prime number does not have any common divisor

with numbers smaller than that prime number itself.

If one is able to find the prime factors of , then a given

Hensel code can be efficiently solved with the modified EEA.

However, factoring large integers is known to be hard [50].

2) Secret hensel code II

Let be a rational number, be an odd prime number

and be an arbitrary positive integer. We generate the secret

Hensel code in the conventional way by calculating

 mod without ever disclosing where

computations will be performed over Hensel codes similarly

International Journal of Information and Electronics Engineering, Vol. 10, No. 1, March 2020

8

generated without modulo reduction. That means that

everything that we stated about the Secret Hensel Code I

remains true for Secret Hensel Code II with the exception of

the prime factorization option from , since that in this case,

there is no to be factored this time. In Section 4 we will

demonstrate operations with and without the modulus .

D. Multiple Hensel Codes

Calculating Hensel codes with multiple prime numbers is

related to the notion of g-adic numbers. Its fundamental

properties were discussed in details by Mahler in 1961 [51]

and 1973 [52]. Morrison in [53] describes the in -adic as

the product of distinct primes such that

 ∏

(33)

where all -adic numbers are considered expansions of

rational numbers that are isomorphic to the set of rational

numbers.

Theorem 2 states that there is an upperbound ⌊√

⌋

such that every rational number in which the absolute value

of numerator and denominator, individually, is bounded by ,

can be uniquely converted to its Hensel code and recovered

back to rational form. The in Theorem 2 is related to the

fact that every rational number that has its numerator and

denominator bounded by in their absolute value is called

an order-N Farey fraction [31], [32], [54].

In -adic arithmetic, if is a product of odd prime

numbers and is a positive integer, then

 ⌊√

⌋ ∏

(34)

and there is a one-to-one mapping from order- Farey

fractions into digits Hensel codes. The concept of digits in

Hensel code comes from the number of primes in and is

directly related to the ability of encoding larger fractions

where the greater the number of primes, the larger the

order- Farey fractions that can be uniquely encoded and

decoded. In fact, one might chose which strategy to pursue: in

order to encode larger fractions, one can increase the size of ,

 , or use multiple ’s (forming a -adic number).

This concept is important in order to understand what we

refer to as multiple Hensel codes. A Hensel code computed

with a single prime number is a single digit Hensel code

while a Hensel code computed with prime numbers

 is a -digit Hensel code, thus, a -adic number.

When a list of rational numbers is Hensel encoded, distinct

instances of single digit Hensel codes are computed. We refer

to the process of Hensel encoding a single rational number

with multiple prime numbers as multiple Hensel code.

Definition 3: Given a rational number , prime

numbers , and an arbitrary positive integer , the

multiple Hensel encode

() (()

)

(35)

is given by:

1. Calculate the individual Hensel codes of with
each pri me in order to yield ()
such that

 (

)

(36)
2. Return ().

Definition 4: Given multiple Hensel codes (),

prime numbers , and an arbitrary positive integer , a

multiple Hensel decode

 (() ())

(37)

is given by:

1. Let the total residue be such that

 ∑

 ((

)

mod
) mod

(28)

where ∏

 .

2. Apply the single digit Hensel decode to recover

 ()

(39)

3. Return .

Theorem 6: For all odd prime numbers ,

arbitrary positive integers and rational numbers such

that

 | | | | √

(40)

where

 ∏

(41)

given a -digit Hensel code

() (()

)

(42)

it holds that

 (() (()

))

(43)

Proof 9: Theorem 3 states the correctness of single digit

Hensel codes and its inverses. The direct map of multiple

Hensel codes is computed as a list of single digit Hensel

codes and therefore follows the same rules stated in

Theorems 1 and 2. The first step of the multiple Hensel

decode consists of calculating the total residue , which is

done via Chinese Remainder Theorem where each prime

number is associated to its corresponding Hensel code ,
therefore the inverse map is equivalent to the decoding

process of the single digit Hensel code.

Although we do not cover parallel computation [55]-[57]

in this work, we remark that there are several instances of the

use of -adic numbers for parallel processing [53], [58]-[63]

that take advantage of the properties we discuss in this

section.

International Journal of Information and Electronics Engineering, Vol. 10, No. 1, March 2020

9

III. ENCODING SCHEME

Definition 5: The data encoding scheme is a tuple of three

polynomial-time algorithms

()
(44)

such that

1. The is a probabilistic polynomial-time
algorithm that takes as input and outputs a key
secret (), where are
 -bit odd prime numbers uniformly generated from
the set of all -bit prime numbers , and are
arbitrarily selected from the set * +
observing the condition , and a public

modulus (∏

)
 . We write ()

 ().
2. The is a probabilistic polynomial-time

algorithm that takes a secret key and a datum

 as input and outputs a code . We write

 ().
3. The is a deterministic polynomial-time

algorithm that takes a secret key and a code as
input and outputs the datum . We write
 ().

Definition 6: The Setup algorithm () () is

given by:

1. Given the parameter , uniformly generate four prime
numbers , each one of bit length :

 * +
(45)

2. where the secret key is defined as
().

3. Compute the public modulus such that

 (∏

)

(46)

4. Return ().
Definition 7: The Encode algorithm ()

is given by:

5. Uniformly generate two random numbers such
that

 and
 .

6. Given a datum
 , apply the inverse of the

multiple Hensel encode on () using the
primes () and the arbitrary positive integer
 in order to calculate :

{

 | | | |

 √

 }

(47)

7. Calculate
 such that

 ()
(48)

8. Return .

Definition 8: The Decode algorithm ()
is given by

1. Calculate with the inverse Hensel code on using
 and such that:

 ()
(49)

2. Recover by calculating the multiple Hensel code of
 :

 ()
(50)

3. Return .

Theorem 7: For all secret key output by and all

data
 , it holds that

 (())
(51)

Proof 10: The proof of the theorem is implied in the proofs

for Theorems 3 and 6.

Fig. 1 and Fig. 2 illustrate the encoding and decoding

flows.

Fig. 1. Encoding.

Fig. 2. Decoding.

IV. EXAMPLES

The encoding algorithm () preserves

addition and multiplication over encoded data, such that:

 ()

 () ()
(52)

and

International Journal of Information and Electronics Engineering, Vol. 10, No. 1, March 2020

10

 ()

 () ()
(53)

Subtraction and division are also possible however it

requires adding a new encoding layer in our encoding scheme

which enables any rational number as input (for subtraction)

and the knowledge of (for division, since division is

calculated via modular multiplicative inverse of the

denominator and). Thus, in order to keep encoding

scheme with only two layers of encoding and keep , ,
private, one might develop desired operations with arithmetic

circuits from combinations of addition and multiplication.

In this section we provide some examples of encoding,

decoding and homomorphic operations with encoded data.

For clarity, we will use the same setup configuration for all

examples, which is:

(()) ()

(54)

Next, we breakdown the encoding and decoding

procedures.

Example 3: (Encoding data 1) Let , and

 . We first calculate

 (() ())

 ((

) (

))

(55)

Then, is given by

 ()

 (

)

(56)

Example 4: (Encoding data 2) Let , and

 . We first calculate

 (() ())

 ((

) (

))

(57)

Then, is given by

 ()

 (

)

(58)

In the next sections we will demonstrate how to compute

on and both without and with modulo reduction.

A. Computation Without Modulus

We will first compute addition and multiplication without

reducing to modulus . This can be useful for those who can

afford an arbitrary size growth as a result of computations

over encoded data. In this scenario, factoring to find

 is not an option, which would lead the attempts to

solve for the secret prime numbers through techniques other

than prime factorization.

Example 5: (Addition over encoded data 1 and 2)

 (

)

(59)

we can see that

 ()

(

)

(60)

and
 ()

 (

)

(61)

therefore,

 ()
(62)

Example 6: (Multiplication over encoded data 1 and 2)

(63)

and

International Journal of Information and Electronics Engineering, Vol. 10, No. 1, March 2020

11

 ()

(

)

(64)

and

 ()

 (

)

(65)

therefore,

 ()
(66)

B. Computation with Modulus

Now we compute addition and multiplication modulo .

This is particularly relevant for applications that requires

operations to be under a certain upper-bound. In this scenario,

it is required that is public.

(Addition over encoded data 1 and 2 modulo)

 (

) (mod)

(67)

and

 ()

(

)

(68)

and

 ()

 (

)

(69)

(Multiplication over encoded data 1 and 2 modulo)

 (

) (mod)

(70)

and

 ()

(

)

(71)

and

 ()

 (

)

(72)

V. FEATURES AND TREAD-OFFS

A. Performance

The results in this section were obtained in an environment

with the following specs:

 Processor: 2.8 GHz Intel Core i7

 Memory: 16 GB 1600 MHz DDR3

 OS: macOS High Sierra 10.13.6 (17G65)
The results in Tables I and II were obtained with the MSH

Code Ruby library, ruby 2.6.3p62 (2019-04-16 revision

67580) [x86_64-darwin17]. Ruby is not an ideal

programming language for writing software for performance

tests. We chose Ruby for being a language of fast prototyping

and human-friendly readability. The generation of prime

numbers via OpenSSL implementation in Ruby (openssl

2.1.2) is very slow, thus the discrepancy in time from Setup

algorithm to all the other operations. This should not be a

critical factor since the Setup algorithm is the least executed

algorithm among all the others (once the primes are generated,

Setup will generally not be executed again for a while. The

Setup algorithm consists mostly of just generating four prime

numbers and computing their product. It is clear that the time

taken to generate these primes is the determining factor for

the overall algorithm runtime. To illustrate how the

programming language might affect the runtime of Setup

algorithm, consider the results in Table III for an

implementation in Python 3.7.4.

TABLE I: PERFORMANCE RESULTS WITH

Algorithm/Operation Time (seconds)

Setup 0.653246

Encode 0.006342

Decode 0.000038

Addition 0.000008

Multiplication 0.000019

Encoding 4D vector 0.012901

Decoding 4D vector 0.000176

Dot product 4D 0.000048

International Journal of Information and Electronics Engineering, Vol. 10, No. 1, March 2020

12

TABLE II: PERFORMANCE RESULTS WITH

Algorithm/Operation Time (seconds)

Setup 24.494334

Encode 0.009593

Decode 0.000055

Addition 0.000005

Multiplication 0.000027

Encoding 4D vector 0.034336

Decoding 4D vector 0.000179

Dot product 4D 0.000094

B. Compactness

Our construction consists of three small algorithms which

will most likely result on small code bases no matter the

programming language of choice. All the operations are

performed over integers, including the computing of the

upper-bound (see Section 2.4) which is done via the

integer implementation of the square root.

C. Encoding Size

The bit length of encoded data using our construction is

| | its (| | its). Operations over encoded data that are

confined in will produce results where . As an

example, if , and , encoding a datum

 such that | | its will generate a such that | | its
 . This expansion in size might be expensive for very

hardware-limited environments, such as edge computing.

However, we hope that the compactness and efficiency of our

solution alongside the added benefits such as probabilistic

and homomorphic encoding will enable opportunities that

will justify the encoding size.

D. Secret Variable Management

The Setup algorithm yields four secret primes
which might be kept secret at all times. Applications that

currently do not encode their data must consider the concerns

of managing secret keys. Recommendations are found in .

TABLE III: SETUP ALGORITHM IN PYTHON 3

 Time (seconds)

1024 0.09601879119873047

2048 0.59281396865844730

4096 3.69716095924377440

VI. AVAILABILITY

Our implementation of the MSH Code Ruby library is

available at https://github.com/davidwilliam/ruby-msh-code.

VII. CONCLUSIONS

In this work we introduced a probabilistic fully

homomorphic data encoding scheme based on multiple secret

Hensel codes. Our scheme can be used in conjunction with

existing encryption tools or as an stand-alone hiding

mechanism while offering promising obfuscation properties.

These properties can be further analyzed and explored

towards the realization of an encryption scheme. We

discussed how we explored the foundations of p-adic and

g-adic arithmetic in order to develop the concept of multiple

secret Hensel codes that serves as the basis of a compact and

efficient data encoding solution. While reviewing the

properties of conventional Hensel codes, we discussed the

opportunities of exploring secret parameters and the

challenge of calculating the inverse map of a Hensel code

without satisfying minimum requirements established in the

literature. We showed how the notion of g-adic numbers can

be useful to enable the combination of meaningless and

meaningful data in the same partition, so we add a

probabilistic feature to secret Hensel codes. We presented

worked examples to demonstrate the homomorphic

operations over encoded data and provided insights of how

our construction can serve real-world applications, alongside

a working code that implements our idea. Our solution can be

extended to g-adic numbers of arbitrarily many k digits (the

involved number of prime numbers). Not only we do not

expect any significant loss in performance but further

investigation might reveal an escalation in hardness by a

factor of k. The same mathematical foundation used in our

construction can be extended in order to provide other

homomorphic solutions including parallel / distributed

computation, multiparty computation and, by properly

managing secret components within our scheme, a variety of

security protocols.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

David W. H. A. da Silva conducted the research, proposed

and implemented the constructions in this work and wrote the

paper. Carlos Paz de Araujo reviewed the mathematical

foundation and recommended the investigation and

application of -adic numbers for data computation and

secrecy. Edward Chow supervised the content organization,

the flow of ideas and the paper presentation; all authors had

approved the final version.

REFERENCES

[1] J. K. Resch and W. B. Leggette, “Encoding data in a dispersed storage

network,” Google Patents, 2019.

[2] B. Conway and L. E. Halperin, “Data recovery utilizing optimized

code table signaling,” Google Patents, 2019.

[3] K. Narayanan, V. Honkote, D. Ghosh, and S. Baldev, “Energy efficient

communication with lossless data encoding for swarm robot

coordination,” in Proc. 2019 32nd International Conference on VLSI

Design and 2019 18th International Conference on Embedded Systems

(VLSID), 2019, pp. 525–526.

[4] R. M. Thanki and A. Kothari, “Data compression and its application in

medical imaging,” in Hybrid and Advanced Compression Techniques

for Medical Images, Springer, 2019, pp. 1–15.

[5] J. C. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy,

“Potential enefits of delta encoding and data compression for HTTP,”

ACM SIGCOMM Computer Communication Review, vol. 27, no. 4, pp.

181–194, 1997.

[6] A. F. Nagui , N. Seshadri, and A. R. Calder ank, “Increasing data rate

over wireless channels,” IEEE Signal Process. Mag., vol. 17, no. 3, pp.

76–92, 2000.

[7] G. K. Wallace, “The JPEG still picture compression standard,” IEEE

Trans. Consum. Electron., vol. 38, no. 1, pp. xviii-xxxiv, 1992.

[8] D. L. Gall, “MPEG: A video compression standard for multimedia

applications,” Commun. ACM, vol. 34, no. 4, pp. 46–59, 1991.

[9] V. G. Cerf, “ASCII format for network interchange,” 1969.

[10] F. Yergeau, “UTF-8, a transformation format of ISO 10646,” 2003.

[11] Z. Chi, Y. Li, H. Sun, Y. Yao, and T. Zhu, “Concurrent

cross-technology communication among heterogeneous IoT devices,”

IEEE/ACM Trans. Netw., 2019.

International Journal of Information and Electronics Engineering, Vol. 10, No. 1, March 2020

13

https://github.com/davidwilliam/ruby-msh-code

[12] R. M. Chao, H. C. Wu, C. C. Lee, and Y. P. Chu, “A novel image data

hiding scheme with diamond encoding,” EURASIP J. Inf. Secur., vol.

2009, no. 1, p. 658047, 2009.

[13] E. T. Lin and E. J. Delp, “A review of data hiding in digital images,” in

PICS, 1999, vol. 299, pp. 274–278.

[14] M. T. Parvez and A. A.-A. Gutu , “Vi rant color image steganography

using channel differences and secret data distri ution,” Kuwait J Sci

Eng, vol. 38, no. 1B, pp. 127–142, 2011.

[15] T. Hwang and T. R. N. Rao, “Secret error-correcting codes (SECC),” in

Proc. on Advances in Cryptology, 1990, pp. 540–563.

[16] P. Dutta, D. Bhattacharyya, and T. Kim, “Data hiding in audio signal:

A review,” Int. J. Database Theory Appl., vol. 2, no. 2, pp. 1–8, 2009.

[17] M. R. Ogiela and U. Ogiela, “Grammar encoding in DNA-like secret

sharing infrastructure,” in Advances in Computer Science and

Information Technology, Springer, 2010, pp. 175–182.

[18] G. G. Dagher, A. P. Machado, E. C. Davis, T. Green, J. Martin, and M.

Ferguson, “Data storage in cellular DNA: Contextualizing diverse

encoding schemes,” Evol. Intell., pp. 1–13, 2019.

[19] P. K. Naskar, S. Paul, D. Nandy, and A. Chaudhuri, “DNA encoding

and channel shuffling for secured encryption of audio data,” Multimed.

Tools Appl., pp. 1–24, 2019.

[20] L. R. Ra iner and B. Gold, “Theory and application of digital signal

processing,” Englewood Cliffs, NJ, Prentice-Hall, Inc., p.777, 1975.

[21] E. A. Lee, “Cy er physical systems: Design challenges,” in Proc. 2008

11th IEEE International Symposium on Object and

Component-Oriented Real-Time Distributed Computing (ISORC),

2008, pp. 363–369.

[22] C. M. Bishop, Pattern Recognition and Machine Learning, springer,

2006.

[23] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision

and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646,

2016.

[24] K. Hwang and A. Faye, “Computer architecture and parallel

processing,” 1984.

[25] B. Wickremasinghe, R. N. Calheiros, and R. Buyya, “Cloudanalyst: A

cloudsim-based visual modeller for analysing cloud computing

environments and applications,” in Proc. 2010 24th IEEE

International Conference on Advanced Information Networking and

Applications, 2010, pp. 446–452.

[26] K. Hensel, Theorie der Algebraischen Zahlen, vol. 1. BG Teubner,

1908.

[27] T. M. Rao and R. T. Gregory, “The conversion of Hensel codes to

rational num ers,” in Proc. 1981 IEEE 5th Symposium on Computer

Arithmetic (ARITH), 1981, pp. 10–20.

[28] T. M. Rao, “Conversion of Hensel codes to rational num ers,” Comput.

Math. with Appl., vol. 10, no. 2, pp. 185–189, 1984.

[29] E. V. Krishnamurtht, “Matrix processors using p-adic arithmetic for

exact linear computations,” in Proc. 1975 IEEE 3rd Symposium on

Computer Arithmetic (ARITH), 1975, pp. 92–97.

[30] E. V. Krishnamurthy, T. M. Rao, and K. Su ramanian, “Finite

segmentp-adic number systems with applications to exact computation,”

in Proc. the Indian Academy of Sciences-Section A, 1975, vol. 81, no. 2,

pp. 58–79.

[31] E. V. Krishnamurthy, “On the conversion of Hensel codes to Farey

rationals,” IEEE Trans. Comput., vol. 100, no. 4, pp. 331–337, 1983.

[32] R. T. Gregory, “Error-free computation with rational num ers,” BIT

Numer. Math., vol. 21, no. 2, pp. 194–202, 1981.

[33] A. Miola, “Alge raic approach to p-adic conversion of rational

num ers,” Inf. Process. Lett., vol. 18, no. 3, pp. 167–171, 1984.

[34] X. Li, Exact Matrix Computation by Multiple P-adic Arithmetic, 2016.

[35] X. Li and C. Lu, “Proactive self-defense algorithm for large matrix

calculation using multiple P-adic data type,” in Proc. the 2015

Conference on Research in Adaptive and Convergent Systems, 2015,

pp. 262–267.

[36] M. Etzel and W. Jenkins, “Redundant residue num er systems for error

detection and correction in digital filters,” IEEE Trans. Acoust., vol. 28,

no. 5, pp. 538–545, 1980.

[37] Ç. K. Koç, “Parallel p-adic method for solving linear systems of

equations,” Parallel Comput., vol. 23, no. 13, pp. 2067–2074, 1997.

[38] F. Winkler, “A p-adic approach to the computation of Grö ner ases,”

J. Symb. Comput., vol. 6, no. 2–3, pp. 287–304, 1988.

[39] E. A. Arnold, “Modular algorithms for computing Grö ner ases,” J.

Symb. Comput., vol. 35, no. 4, pp. 403–419, 2003.

[40] Y. LeCun, C. Cortes, and C. J. Burges, MNIST Handwritten Digit

Database, 2010.

[41] B. S. Barillas, “Efficient machine learning inference for embedded

systems with integer based restricted boltzmann machines classifiers,”

University of Colorado Colorado Springs. Kraemer Family Library,

2019.

[42] D. W. H. A. Da Silva, C. Paz De Araujo, and E. Chow, “Fully

homomorphic key update and key exchange over exterior product

spaces for cloud computing applications,” in Proc. IEEE Pacific Rim

International Symposium on Dependable Computing, PRDC, 2019, vol.

2019-Decem.

[43] D. W. H. A. da Silva, C. P. de Araujo, E. Chow, and B. Sosa Barillas,

“A new approach towards fully homomorphic encryption over

geometric algebra,” in Proc. 2019 IEEE 10th Annual Ubiquitous

Computing, Electronics & Mobile Communication Conference

(UEMCON), 2019.

[44] D. W. H. A. da Silva, O. Hanes, E. Chow, B. Sosa Barillas, and C. P. de

Araujo, “Homomorphic image processing over geometric product

spaces and finite P-adic arithmetic,” in Proc. 2019 IEEE 11th

International Conference on Cloud Computing Technology and

Science (CloudCom), 2019.

[45] D. E. Knuth, “The art of computer programming, ” Pearson Education,

vol. 3, 1997.

[46] J. A. M. Naranjo, J. A. López-Ramos, and L. G. Casado, “Applications

of the extended Euclidean algorithm to privacy and secure

communications,” in Proc. 10th International Conference on

Computational and Mathematical Methods in Science and Engineering,

2010, pp. 702–713.

[47] J. E. H. A. V. Aho and J. D. Ullman, The Design and Analysis of

Computer Algorithms, Addison-Wesley, 1974.

[48] D. E. Knuth, The Art of Computer Programming, Addison-Wesley,

1978.

[49] W. E. M. Hardy GH, An Introduction to the Theory of Numbers,

Clarendon Press, 1979.

[50] R. L. Rivest, A. Shamir, and L. Adleman, “A method for o taining

digital signatures and public-key cryptosystems,” Commun. ACM, vol.

21, no. 2, pp. 120–126, 1978.

[51] K. Mahler, “Lectures on diophantine approximations. Part I: g-adic

num ers and Rothś theorem,” 1961.

[52] K. Mahler, Introduction to P-Adic Numbers and Their Function, CUP

Archive, 1973.

[53] J. F. Morrison, “Parallel p-adic computation,” Inf. Process. Lett., vol.

28, no. 3, pp. 137–140, 1988.

[54] P. Kornerup and R. T. Gregory, “Mapping integers and Hensel codes

onto farey fractions,” BIT Numer. Math., vol. 23, no. 1, pp. 9–20, 1983.

[55] L. G. Valiant, “A ridging model for parallel computation,” Commun.

ACM, vol. 33, no. 8, pp. 103–111, 1990.

[56] S. G. Akl, Parallel Computation: Models and Methods, vol. 4. Prentice

Hall Upper Saddle River, 1997.

[57] D. Culler et al., “LogP: Towards a realistic model of parallel

computation,” in ACM Sigplan Notices, 1993, vol. 28, no. 7, pp. 1–12.

[58] C. Limongelli and H. W. Loidl, “Rational num er arithmetic y

parallel p-adic algorithms,” in Proc. International Conference of the

Austrian Center for Parallel Computation, 1993, pp. 72–86.

[59] C. Limongelli, “On an efficient algorithm for ig rational num er

computations by parallel p-adics,” J. Symb. Comput., vol. 15, no. 2, pp.

181–197, 1993.

[60] A. Colagrossi and C. Limongelli, “Big num ers p-adic arithmetic: A

parallel approach,” in Proc. International Conference on Applied

Algebra, Algebraic Algorithms, and Error-Correcting Codes, 1988, pp.

169–180.

[61] J. Tamura, “A class of transcendental num ers having explicit g-adic

and Jacobi-Perron expansions of ar itrary dimension,” Acta Arith., vol.

71, no. 4, pp. 301–329, 1995.

[62] C. Limongelli, “Exact solution of computational problems via parallel

truncated p-adic arithmetic,” in Advances in the Design of Symbolic

Computation Systems, Springer, 1997, pp. 68–83.

[63] J. Coates, “On p-adic L-functions attached to motives over ℚ II,” Bol.

da Soc. Bras. Matemática-Bulletin/Brazilian Math. Soc., vol. 20, no. 1,

pp. 101–112, 1989.

Copyright © 2020 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

David W. H. A. da Silva received his B.S.B.A. degree

in business administration from Universidade Potiguar

in Natal, Rio Grande do Norte, Brazil in 2012, his

M.S.C.S. in computer science from University of

Colorado Colorado Springs, Colorado, USA, in 2017,

and he is a PhD candidate in computer science also

from University of Colorado Colorado Springs. His

research is focused on special types of data

transformations such as data representation, compression, and encryption.

International Journal of Information and Electronics Engineering, Vol. 10, No. 1, March 2020

14

https://creativecommons.org/licenses/by/4.0/

In 1998 he co-founded a Startup as a software engineer for developing

e-commerces of the first generation in Brazil. In 2000 he co-developed one

of the first sites of online gaming, receiving an award of Top 3 best site in

Brazil in that year. In 2002 he became the main software engineer of

Brazilian online News outlet and in 2004 he founded his second Startup,

focused on R&D based on IoT and emerging technologies. In 2014 he joined

ESPN Brazil and coordinated a team of software engineers responsible for

all ESPN online and mobile products. In 2015 he decided to pause his career

to invest in higher education. He is now on the last term of his PhD and work

as a senior research scientist at Symetrix Corporation. Mr. Silva is an IEEE

member and a member of the IEEE Computer Society.

Carlos Paz de Araujo received his BS/MS/PhD

degrees in 1972-1982 in electrical engineering at the

University of Notre Dame in South Bend, Indiana in the

United States. He has been a professor of electrical

engineering at the University of Colorado in Colorado

Springs since receiving his PhD. He created Symetrix

Corporation in 1989 and was a founder of Ramtron

Corporation in 1984. Dr. Araujo became a IEEE fellow

in 2012 “for Contri utions to the Field of Ferroelectric Nonvolatile

Memories”. His work on Ferroelectric RAMs has een acknowledged with

the 2006 IEEE Daniel Noble award. He has pioneered many new devices

based on smart oxides. Some applications of these devices involved high

dielectric constant nano-capacitors used in microwave devices and hearing

aids. In the FeRAM development, he was the first to introduce fatigue free

devices which led to many industrial partners and successful applications in

smart cards like the JR Suica (Japan) and others. Over 1.3 Billion devices

have een produced under Dr. Araujo’s patents worldwide. He is also

involved in ferroelectric-based advanced IR devices for medical applications.

His current interest is in correlated electron devices as memory (created

CeRAM, correlated electron Non-volatile RAM) and ultrafast switches for

beyond CMOS technology. He is the author of over 300 papers and more

than 200 US issued Patents. Also, he has over 300 foreign patents.

Edward Chow received his B.S. degree in 1977 from

the National Taiwan University, and his M.A. and

Ph.D. degrees from the University of Texas, Austin,

in 1982 and 1985. He joined the Computer Science

Department in 1991 as an associate professor, and

became an Interim El Pomar Chair in October of 2002.

He was appointed as a professor in July of 2004. Dr.

Chow has taught a variety of courses, including

Principles of computer science, web programming, software security,

computer communications, multimedia computing and communications,

advanced web systems and internet, fundamentals of computer/network

security, distributed networks, and advanced system security designs.

He was the principal investigator of Secure Collective Network Defense

Project, TNUA-UCCS International Cooperation on Human Body

Movement Analysis project, Making Secure Information Sharing Easy and

A Reality project, Network Restoration and Survivable Architecture project,

as well as several other projects. He is presently working on web

systems/security, WAN load balancing, internet network measurement,

wireless network planning, high speed networks/protocols,

distributed/optimal algorithms for network resource allocation, and

interactive programming environments for network/protocol design.

International Journal of Information and Electronics Engineering, Vol. 10, No. 1, March 2020

15

