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Abstract—Data encoding is widely used for a variety of 

reasons. Encoding schemes in general serve to convert one form 

of data to another in order to enhance the efficiency of data 

storage, transmission, computation and privacy, to name just a 

few. When it comes to privacy, data may be encoded to hide its 

meaning from direct access or encrypted to attain a certain 

security level. If the encoding scheme preserves additive and 

multiplicative homomorphisms, then operations on encoded 

data may be performed without prior decoding, which improves 

the utility of such mechanism. We introduce a probabilistic fully 

homomorphic encoding scheme that is practical as a 

stand-alone entry-level solution to data privacy or as an added 

component of existing encryption schemes, especially those that 

are deterministic. We demonstrate how the finite segment of 

p-adic numbers can be explored to derive probabilistic multiple 

secret Hensel codes which yields multiple layers of obscurity in 

an efficient way. Our encoding scheme is compact, ultra 

lightweight and suitable for applications ranging from edge to 

cloud computing. Without significant changes in its 

mathematical foundation, as a proposed continuation of this 

present work, further investigation can take place in order to 

confirm if the same encoding scheme can be extended to be a 

standalone secure instance of a fully homomorphic encryption 

scheme. 

 
Index Terms—Data encoding, p-adic numbers, g-adic 

numbers, hensel code, secret Hensel codes, homomorphic 

encoding.  

I. INTRODUCTION 

Among its many applications, encoding techniques 

facilitate certain procedures with data such as storage and 

traffic  [1], recovery  [2], compression [3]-[5], signal 

processing [6], to cite a few. Classical examples of data 

encoding techniques include JPEG [7], MPEG [8], ASCII [9] 

and UTF-8 [10]. In this work we examine data encoding as it 

relates to privacy. With the advent of newer technologies, 

such as IoT and 5G wireless protocols, the volume of stored 

and transmitted data is increasing exponentially. This 

phenomenon affects not only their supporting infrastructure 

[11] but also raises concerns about data privacy. Data 

encoding has also been used to improve privacy through data 

hiding techniques [12] such as steganographic encoding for 

digital images [13], [14], secret error-correcting codes [15], 

audio data hiding [16], grammar encoding [17], and DNA 

encoding [18], [19]. It is safe to assume that data encoding 

has the potential to play a relevant role in every stage of the 

data life-cycle. 

We are particularly interested in novel and efficient ways 

by which data can be represented while offering some level 
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of secrecy. Our goal is to propose a flexible, efficient and 

general purpose data encoding scheme that preserves additive 

and multiplicative homomorphisms and can be either 

integrated into existing encryption schemes or serve as a 

single hiding technique for a variety of applications in 

Engineering and Computer Science such as digital signal 

processing [20], cyber physical systems [21], machine 

learning [22], edge computing [23], parallel processing [24], 

cloud applications [25], among others. 

A. Our Contribution 

We propose a probabilistic fully homomorphic encoding 

mechanism based on multiple secret Hensel codes, as an 

extension of the finite segment of p-adic and g-adic numbers. 

The conventional Hensel code is extended in the following 

ways: 

1. The prime numbers involved in the Hensel encoding are 

kept private which compromises the efficiency of 

calculating the corresponding inverse map; 

2. Multiple prime numbers are used in the g-adic setting 

where random numbers are considered as part of the data 

we want to encode, which gives the encoding scheme a 

probabilistic nature; 

3. From any given integer to be encoded, we first force the 

generation of a rational number via the inverse g-adic 

mapping, so secret Hensel codes are generated. 

This presents a challenge in the decoding mechanism if the 

prime numbers are not known. Among the possible 

applications enabled by our scheme we highlight the data 

encoding of existing encryption schemes, especially those 

that do not possess randomization in their encryption 

function. It may also be applied to functions over structured 

data such as audio, video, image, signals, and in a large 

variety of applications that afford a reasonable data 

expansion in favor of meaningful obfuscation. 

B. Related Work 

Although the theory of p-adic numbers were formally 

introduced in the end of the nineteenth century [26], Hensel 

codes were only proposed as a theory on its own between the 

late 1970s and early 1980s [27]-[33]. Since then, Hensel 

codes have been applied for a variaty of purposes, including 

error- free, parallel and distributed computation as seen in 

[34]-[39]. 

As a recent example of the advantages of applying Hensel 

codes in real-world solutions, Barillas demonstrated an 

efficient quantization method for a new classification 

approach in machine learning based on finite p-adic 

arithmetic over the MNIST dataset [40]. Barillas obtained a 

peformance 42 times faster and energy consumption 62 times 

lower than current state-of-the-art [41]. Hensel codes has also 

been recently used as an encoding component for 
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experimental encryption schemes and related protocols 

[42]-[44]. 

C. Preliminaries 

We denote the bit length of any number   as | | its. If a 

random number   is said to be uniformly generated and we 

provide that | | its  | | its , then the range of   is 

 | | its    | | its   . If we provide that | | its  | | its, then 

the range of   is given by    | | its   . A set   is denoted 

as usual, that is   *       +, while an ordered list   is 

denoted as   (       ). We seek to only add notation and 

nomenclature in order to favor readability and 

implementation. 

II. HENSEL CODES 

As an alternative for the application of infinite precision 

integer and rational arithmetic [45], which are generally 

expensive in terms of space and time consumption, Hensel 

proposed the p-adic number system [26] (for p as an odd 

prime number) with which one can perform calculations on 

integers as a replacement of the operations on rational 

numbers, which waives the need of dealing with the costs of 

rational arithmetic while achieving the same results. 

Krishnamurthy, Rao and Subramanian further developed the 

ideas of Hensel to create a finite segment of p-adic numbers, 

which they named Hensel codes, as an isomorphic map 

between a specialized subset of the rational numbers and 

integers over a finite field modulo p. Rao and Gregory [27] 

remarked that converting an integer back into rational 

number was difficult, so they proposed methods to alleviate 

this problem. However, it was Miola in [33] that introduced a 

general and efficient method for calculating the direct and 

inverse mappings of Hensel codes. 

The reader might refer to Miola in [33] for detailed 

information about the unique direct and inverse maps 

between a certain set of rational numbers and their 

corresponding Hensel codes, which we hope will create 

confidence about the correctness, efficiency in representation 

and applicability of both p-adic and g-adic numbers in 

modern real-world applications. Here, we rearrange the 

theorems and proofs of interest in order to make our 

discussion self-contained, which we hope to help the 

appreciation of the fundamental notions in our contribution, 

in particular, how Hensel codes can be explored to provide a 

fully homomorphic data encoding scheme. 

A. Extended Euclidean Algorithm 

Due to its importance in the mappings between rational 

numbers and integers over a finite field within the theory of 

p-adic numbers, we provide a brief review on the basics of 

the Extended Euclidean Algorithm (EEA) [46]. The EEA 

guarantees that 

gcd(   )  gcd(     )  gcd(     )  

gcd(     )    gcd(         )  

gcd(       )     

    

(1) 

which means that gcd(   )  yields the last non-zero 

remainder in the sequence   ,   ,    . We remark the 

description provided in [47], [48], where given two 

non-negative integers    and   , the EEA computes   and   

and gcd(     ) so the following holds: 

          gcd(     ) 
(2) 

Within the computation of the EEA, the values for 

        

        

       
(3) 

are calculated over each iteration such that 

              given       

              for           

              for           
(4) 

considering that 

  ⌊
    

  
⌋  

    

     gcd(     ) 
(5) 

The property in Eq. 2 can be generalized to what is known 

as a diophantine equation, and it is given by 

          
(6) 

where   and   are unknown integers and   ,    and   are 

given integers. The solution     provided in [48] when 

gcd(     )    is given by 

        
   

gcd(     )
 

        
   

gcd(     )
 

(7) 

where   and   are integers and     gcd(     ). 

B. Hensel Code and Its Inverse 

The isomorphic direct and inverse mappings between a 

certain set of rational numbers and integers modulo    is 

described below. 

Theorem 1: Given a rational number     and   , where   

is an odd prime number and   is an arbitrary positive integer 

such that  ,   and    are pairwise relatively prime, the 

Hensel code of the rational number    , denoted as  , is 

calculated as follows: 

        mod    
(8) 

for all   and   such that 

| | | |  ⌊√
  

 
⌋  

(9) 
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Proof 1: The value of   as in Eq. 8 can be obtained as a 

solution of 

  (
 

 
)  mod   

(10) 

which can also be written as 

        
(11) 

for an integer  . This equation is a diophantine equation 

solvable by the EEA with solutions as in Eq. 7. In this case 

we have 

                      
 

(12) 

and the assertion follows by recalling that     .  
Example 1: Let                and    . The 

Hensel code   of     is given by: 

        mod   

       mod    

      mod    

    
(13) 

The intuition behind the Hensel code computation is rather 

straightforward. Consider the rational number    , this time 

without the reduction mod    : 

 

 
   

 

 
       

(14) 

We see that another way of representing     is by writing 

the integer   multiplying the inverse of the integer  . The 

Hensel code is the same calculation modulo   , which means, 

according to Example 1, that we need to calculate the 

modular multiplicative inverse of   with respect to the prime 

number    . 
Miola in [33] remarks that, if a Hensel code   is calculated 

for a particular rational number     as shown in Theorem 1, 

then, the EEA will be able to uniquely and correctly compute 

    from  . 

Lemma 1: ([33]) If 

|
 

 
  |  

 

   
 

(15) 

then     is a convergent to  . 

Proof 2: The proof for the lemma is provided by Hardy et 

al. in [49]. 

Theorem 2: ([33]) If     is such that 

  
 

 
 mod    

(16) 

with   | |       | |       ⌊√
  

 
⌋ , then, since 

EEA applied to    and   computes the convergents of     , 
there exists an   such that the  -th convergent determines 

exactly          .  

Proof 3: ([33]) The equation in Theorem 2 can be rewritten 

as 

 

 
 
 

  
 

 

   

(17) 

for some  , and      is an approximation to      with an 

error of 

|
 

 
 
 

  
|  

 

   
 

 

    
 

 

   
 

(18) 

Lemma 1 is then applied to prove that      is a 

convergent of      and it can be computed by EEA (which 

computes all the convergents). Then value     can be 

obtained by EEA as       for the   such that |  |   . 

Example 2: Let      ,       and    . In order to 

find the unique rational number for     we compute the 

EEA for       ,       ,     ,      as follows: 

   

  ⌊
  

  
⌋   

            
           

   

  ⌊
  

  
⌋   

           
           

   
(19) 

and then we stop since    ⌊√
  

 
⌋      . The answer is 

then given by 

  
(  )      

  
 
(  )      

  
 
 

 
 

(20) 

We can now present Definitions 1 and 2. 

Definition 1: The Hensel encode algorithm is denoted as 

   (    
 

 
)

(21) 

for an odd prime number  , an arbitrary positive integer   
and some rational number     such that 

  | |       | |       ⌊√
  

 
⌋  

(22) 

Definition 2: The Hensel decode algorithm is denoted as 

 

 
    (     )

(23) 

for an odd prime number  , an arbitrary positive integer   
and a Hensel code   is given by: 

let     
 ,      ,      and      and    , then, 

while 
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   ⌊√
  

 
⌋

(24) 

is true, the following is computed: 

  ⌊
  

  
⌋

             
             
     

(25) 

So the result is given by 

 

 
 
(  )      

  
 

(26) 

Theorem 3: For all odd prime numbers  , arbitrary positive 

integers   and rational numbers     such that 

  | |       | |       ⌊√
  

 
⌋  

(27) 

given a Hensel code    (       ), it holds that 

   (     (    
 

 
))  

 

 
 

(28) 

Proof 4: Theorems 1 and 2 state that rational numbers 

encoded as in Definition 1 have a unique and correct Hensel 

code for which a Hensel decoding procedure as in Definition 

2 will result in a unique and correct rational number. 

Observing the conditions in Theorems 1 and 2, the mapping 

between that particular set of rational numbers and their 

corresponding Hensel codes is isomorphic. 

C. Secret Hensel Codes 

We extend the notion of Hensel code to what we call secret 

Hensel code by keeping the prime number   private. In the 

scope of this work, we might implement secret Hensel codes 

in two different ways: 

 Hensel codes as a member of   , where   is a product of 

primes; 

 Hensel codes for computation without modulo reduction. 

1) Secret hensel code I 

Let     be a rational number,            be   odd prime 

numbers and   be an arbitrary positive integer. Let   be such 

that 

  ∏   
  

    
(29) 

We generate the secret Hensel code   in the conventional 

way, using only the first prime number of the   primes 

available: 

       mod   
 

(30) 

without ever disclosing   
        . We let     , where 

  is public. This means that we confine the computation with 

Hensel codes in    as opposed to     . The conversion from 

Hensel code to a rational number requires the knowledge of 

  . We show next that without knowing   , one cannot 

uniquely and correctly recover    . 

Theorem 4: A secret Hensel code calculated with a prime 

number    that is made a member of    where   is the 

product of   primes including   , cannot be uniquely solved 

by the EEA. 

Proof 5: Theorem 2 states that | | | |  ⌊√
  

 
⌋ is required 

for finding unique solutions for   and  . The EEA requires 

knowing    to compute the convergents of     . 
We now show that if one uses   as an argument in the EEA, 

replacing the private   
 , the computation will not correctly 

find     from  . 

Theorem 5: Let a rational number     be also an integer, 

that is,    , for all values of   such that | |  ⌊√
  

 
⌋, the 

Hensel code   of     is equal to  .  
Proof 6: The proof for the theorem is implied in the 

Theorem 2. 

Lemma 2: If  (        )    and   is a product of   

prime numbers including   , and   is used as a replacement 

of   
  in the EEA in order to compute the rational number 

    from the corresponding Hensel code  , the following 

holds 

   (     )    
(31) 

Proof 7: If   ∏   
  

    and a Hensel code   

 (        ) according to Definition 1, the following holds 

  ⌊√
 

 
⌋

(32) 

and according to Theorem 5, calculating the EEA for   and   

will result in a rational number     where     and    , 
and therefore    (     )   . 

Lemma 3: If  ,   and   
  are unknown, there are infinitely 

many solutions for   
  given   and  , where   ∏   

  
    for 

   . 
Proof 8: The range of a Hensel code   under   

  is 

    
   . For any   

    
  there are infinitely many 

combinations of  ,   and    that will result on the same  , 

since *      
   +  *      

   +. 
The only efficient method known to date for the inverse 

map of Hensel codes is the slightly modified version of EEA 

(in the rational solution in the end of the computation), which 

we showed cannot be used for this task if    is unknown. One 

might be tempted to use gcd computations in an attempt to 

recover   , however, as remarked by Miola in [33],      is 

a condition for a valid Hensel code with respect to   . By its 

nature, a prime number does not have any common divisor 

with numbers smaller than that prime number itself. 

If one is able to find the prime factors of  , then a given 

Hensel code can be efficiently solved with the modified EEA. 

However, factoring large integers is known to be hard [50]. 

2) Secret hensel code II 

Let     be a rational number,   be an odd prime number 

and   be an arbitrary positive integer. We generate the secret 

Hensel code   in the conventional way by calculating 

     
   mod    without ever disclosing    where 

computations will be performed over Hensel codes similarly 
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generated without modulo reduction. That means that 

everything that we stated about the Secret Hensel Code I 

remains true for Secret Hensel Code II with the exception of 

the prime factorization option from  , since that in this case, 

there is no   to be factored this time. In Section 4 we will 

demonstrate operations with and without the modulus  . 

D. Multiple Hensel Codes 

Calculating Hensel codes with multiple prime numbers is 

related to the notion of g-adic numbers. Its fundamental 

properties were discussed in details by Mahler in 1961 [51]  

and 1973 [52]. Morrison in [53] describes the   in  -adic as 

the product of   distinct primes such that 

  ∏   
  

   

(33) 

where all  -adic numbers are considered expansions of 

rational numbers that are isomorphic to the set of rational 

numbers. 

Theorem 2 states that there is an upperbound   ⌊√
  

 
⌋ 

such that every rational number in which the absolute value 

of numerator and denominator, individually, is bounded by  , 

can be uniquely converted to its Hensel code and recovered 

back to rational form. The   in Theorem 2 is related to the 

fact that every rational number that has its numerator and 

denominator bounded by   in their absolute value is called 

an order-N Farey fraction [31], [32], [54]. 

In  -adic arithmetic, if   is a product of   odd prime 

numbers and   is a positive integer, then 

  ⌊√
 

 
⌋     ∏   

  
   

(34) 

and there is a one-to-one mapping from order-  Farey 

fractions into   digits Hensel codes. The concept of digits in 

Hensel code comes from the number of primes   in   and is 

directly related to the ability of encoding larger fractions 

where the greater the number of primes, the larger the 

order-  Farey fractions that can be uniquely encoded and 

decoded. In fact, one might chose which strategy to pursue: in 

order to encode larger fractions, one can increase the size of  , 

 , or use multiple   ’s (forming a  -adic number). 

This concept is important in order to understand what we 

refer to as multiple Hensel codes. A Hensel code computed 

with a single prime number   is a single digit Hensel code 

while a Hensel code computed with   prime numbers 

       is a  -digit Hensel code, thus, a  -adic number. 

When a list of rational numbers is Hensel encoded, distinct 

instances of single digit Hensel codes are computed. We refer 

to the process of Hensel encoding a single rational number 

with multiple prime numbers as multiple Hensel code. 

Definition 3: Given a rational number    ,   prime 

numbers       , and an arbitrary positive integer  , the 

multiple Hensel encode 

(       )    ((       )   
 

 
)

(35) 

 

is given by: 

1. Calculate the individual Hensel codes of     with 
each pri me         in order to yield (       ) 
such that 

    (     
 

 
)        

(36) 
2. Return (       ). 

Definition 4: Given multiple Hensel codes (       ),   

prime numbers       , and an arbitrary positive integer  , a 

multiple Hensel decode 

 

 
   

  ((       )   (       ))

(37) 

is given by: 

1. Let the total residue   be such that 

  ∑
 

  
 

 
   ((

 

  
 )
  

mod   
 )   mod  

(28) 

where   ∏   
  

   . 

2. Apply the single digit Hensel decode to recover     

 

 
    (     )

(39) 

3. Return    . 

Theorem 6: For all   odd prime numbers        , 

arbitrary positive integers   and rational numbers     such 

that 

  | |       | |       √
 

 

(40) 

where 

  ∏   
  

    
(41) 

given a  -digit Hensel code 

(       )    ((       )   
 

 
)  

(42) 

it holds that 

  
  ((       )     ((       )   

 

 
))  

 

 
 

(43) 

Proof 9: Theorem 3 states the correctness of single digit 

Hensel codes and its inverses. The direct map of multiple 

Hensel codes is computed as a list of single digit Hensel 

codes and therefore follows the same rules stated in 

Theorems 1 and 2. The first step of the multiple Hensel 

decode consists of calculating the total residue  , which is 

done via Chinese Remainder Theorem where each prime 

number    is associated to its corresponding Hensel code   , 
therefore the inverse map is equivalent to the decoding 

process of the single digit Hensel code. 

Although we do not cover parallel computation [55]-[57] 

in this work, we remark that there are several instances of the 

use of  -adic numbers for parallel processing [53], [58]-[63] 

that take advantage of the properties we discuss in this 

section. 
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III. ENCODING SCHEME 

Definition 5: The data encoding scheme is a tuple of three 

polynomial-time algorithms 

(                   )
(44) 

such that 

1. The       is a probabilistic polynomial-time 
algorithm that takes   as input and outputs a key 
secret   (                 ), where         are 
 -bit odd prime numbers uniformly generated from 
the set of all  -bit prime numbers   ,    and    are 
arbitrarily selected from the set *        + 
observing the condition       , and a public 

modulus   (∏   
   

   )  
  . We write (   )  

     ( ). 
2. The        is a probabilistic polynomial-time 

algorithm that takes a secret key   and a datum 

     
   as input and outputs a code  . We write 

        (   ). 
3. The        is a deterministic polynomial-time 

algorithm that takes a secret key   and a code   as 
input and outputs the datum  . We write   
      (   ). 

Definition 6: The Setup algorithm (   )       ( ) is 

given by: 

1. Given the parameter  , uniformly generate four prime 
numbers        , each one of bit length  : 

           

      *        +        
(45) 

2. where the secret key   is defined as   
(                ). 

3. Compute the public modulus   such that 

  (∏   
   

   )  
  

(46) 

4. Return (   ). 
Definition 7: The Encode algorithm         (   ) 

is given by: 

5. Uniformly generate two random numbers       such 
that       

   and       
  . 

6. Given a datum      
  , apply the inverse of the 

multiple Hensel encode on (       )  using the 
primes (        ) and the arbitrary positive integer 
   in order to calculate  : 

  

{
 
 

 
 
 

 
   | |       | |     

  √
  
    
    

  

 }
 
 

 
 

(47) 

7. Calculate      
   such that 

   (       )
(48) 

8. Return  . 

Definition 8: The Decode algorithm         (   ) 
is given by 

1. Calculate   with the inverse Hensel code on   using 
   and    such that: 

     (       )
(49) 

2. Recover   by calculating the multiple Hensel code of 
 : 

   (       )
(50) 

3. Return  . 

Theorem 7: For all secret key   output by       and all 

data      
  , it holds that 

      (        (   ))    
(51) 

Proof 10: The proof of the theorem is implied in the proofs 

for Theorems 3 and 6. 

Fig. 1 and Fig. 2 illustrate the encoding and decoding 

flows. 

 

 
Fig. 1. Encoding. 

 

 
Fig. 2. Decoding. 

 

IV. EXAMPLES 

The encoding algorithm         (   )  preserves 

addition and multiplication over encoded data, such that: 

      (       )

       (    )        (    )
(52) 

and 
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      (      )

       (    )      (    )
(53) 

Subtraction and division are also possible however it 

requires adding a new encoding layer in our encoding scheme 

which enables any rational number as input (for subtraction) 

and the knowledge of    (for division, since division is 

calculated via modular multiplicative inverse of the 

denominator and   ). Thus, in order to keep encoding 

scheme with only two layers of encoding and keep   ,   ,    
private, one might develop desired operations with arithmetic 

circuits from combinations of addition and multiplication. 

In this section we provide some examples of encoding, 

decoding and homomorphic operations with encoded data. 

For clarity, we will use the same setup configuration for all 

examples, which is: 

((                   )  )       ( )

(54) 

Next, we breakdown the encoding and decoding 

procedures. 

Example 3: (Encoding data 1) Let     ,        and 

      . We first calculate    

     
  ((        )    (       ))

   
  ((

    
    
   
)    (

   
    
   
))

 
   

    

(55) 

Then,    is given by 

    (        )

  (
         

    
)

             
(56) 

Example 4: (Encoding data 2) Let      ,        and 

      . We first calculate    

     
  ((        )    (       ))

   
  ((

    
    
   
)    (

   
    
   
))

 
   

   

(57) 

Then,    is given by 

    (        )

  (
         

   
)

              
(58) 

In the next sections we will demonstrate how to compute 

on    and    both without and with modulo reduction. 

A. Computation Without Modulus 

We will first compute addition and multiplication without 

reducing to modulus  . This can be useful for those who can 

afford an arbitrary size growth as a result of computations 

over encoded data. In this scenario, factoring   to find 

        is not an option, which would lead the attempts to 

solve for the secret prime numbers through techniques other 

than prime factorization. 

Example 5: (Addition over encoded data 1 and 2) 

     

 (
              

             
)

              
(59) 

we can see that 

       
  (           )

  

(

 
 

    

  

             )

 
 

 
      

      

(60) 

and 
       (           )

  (
            

      
)

   
(61) 

therefore, 

            (       )          
(62) 

Example 6: (Multiplication over encoded data 1 and 2) 

     
              

             

                           
(63) 

and 
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        (          )

  

(

 
 

    

  

                          )

 
 

 
       

      

(64) 

and 

      (          )

  (
             

      
)

    
(65) 

therefore, 

           (      )           
(66) 

B. Computation with Modulus 

Now we compute addition and multiplication modulo  . 

This is particularly relevant for applications that requires 

operations to be under a certain upper-bound. In this scenario, 

it is required that   is public. 

(Addition over encoded data 1 and 2 modulo  ) 

      (
              

             
) (mod  )

              
(67) 

and 

         (           )

  

(

 
 

    

  

             )

 
 

 
      

      

(68) 

and 

       (           )

  (
            

      
)

   
(69) 

(Multiplication over encoded data 1 and 2 modulo  ) 

     (
              

             
) (mod  )

                     
(70) 

and 

        (          )

  

(

 
 

    

  

                    )

 
 

 
       

      

(71) 

and 

      (          )

  (
             

      
)

    
(72) 

 

V. FEATURES AND TREAD-OFFS 

A. Performance 

The results in this section were obtained in an environment 

with the following specs: 

 Processor: 2.8 GHz Intel Core i7 

 Memory: 16 GB 1600 MHz DDR3 

 OS: macOS High Sierra 10.13.6 (17G65) 
The results in Tables I and II were obtained with the MSH 

Code Ruby library, ruby 2.6.3p62 (2019-04-16 revision 

67580) [x86_64-darwin17]. Ruby is not an ideal 

programming language for writing software for performance 

tests. We chose Ruby for being a language of fast prototyping 

and human-friendly readability. The generation of prime 

numbers via OpenSSL implementation in Ruby (openssl 

2.1.2) is very slow, thus the discrepancy in time from Setup 

algorithm to all the other operations. This should not be a 

critical factor since the Setup algorithm is the least executed 

algorithm among all the others (once the primes are generated, 

Setup will generally not be executed again for a while. The 

Setup algorithm consists mostly of just generating four prime 

numbers and computing their product. It is clear that the time 

taken to generate these primes is the determining factor for 

the overall algorithm runtime. To illustrate how the 

programming language might affect the runtime of Setup 

algorithm, consider the results in Table III for an 

implementation in Python 3.7.4. 

 
TABLE I: PERFORMANCE RESULTS WITH        

Algorithm/Operation Time (seconds) 

Setup 0.653246 

Encode 0.006342 

Decode 0.000038 

Addition 0.000008 

Multiplication 0.000019 

Encoding 4D vector 0.012901 

Decoding 4D vector 0.000176 

Dot product 4D 0.000048 
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TABLE II: PERFORMANCE RESULTS WITH        

Algorithm/Operation Time (seconds) 

Setup 24.494334 

Encode 0.009593 

Decode 0.000055 

Addition 0.000005 

Multiplication 0.000027 

Encoding 4D vector 0.034336 

Decoding 4D vector 0.000179 

Dot product 4D 0.000094 

 

B. Compactness 

Our construction consists of three small algorithms which 

will most likely result on small code bases no matter the 

programming language of choice. All the operations are 

performed over integers, including the computing of the 

upper-bound   (see Section 2.4) which is done via the 

integer implementation of the square root. 

C. Encoding Size 

The bit length of encoded data   using our construction is 

| | its  (   | | its). Operations over encoded data that are 

confined in    will produce results where    . As an 

example, if       ,      and     , encoding a datum 

  such that | | its    will generate a   such that | | its  
    . This expansion in size might be expensive for very 

hardware-limited environments, such as edge computing. 

However, we hope that the compactness and efficiency of our 

solution alongside the added benefits such as probabilistic 

and homomorphic encoding will enable opportunities that 

will justify the encoding size. 

D. Secret Variable Management 

The Setup algorithm yields four secret primes         
which might be kept secret at all times. Applications that 

currently do not encode their data must consider the concerns 

of managing secret keys. Recommendations are found in . 

 
TABLE III: SETUP ALGORITHM IN PYTHON 3 

  Time (seconds) 

1024 0.09601879119873047 

2048 0.59281396865844730 

4096 3.69716095924377440 

 

VI. AVAILABILITY 

Our implementation of the MSH Code Ruby library is 

available at https://github.com/davidwilliam/ruby-msh-code. 

 

VII. CONCLUSIONS 

In this work we introduced a probabilistic fully 

homomorphic data encoding scheme based on multiple secret 

Hensel codes. Our scheme can be used in conjunction with 

existing encryption tools or as an stand-alone hiding 

mechanism while offering promising obfuscation properties. 

These properties can be further analyzed and explored 

towards the realization of an encryption scheme. We 

discussed how we explored the foundations of p-adic and 

g-adic arithmetic in order to develop the concept of multiple 

secret Hensel codes that serves as the basis of a compact and 

efficient data encoding solution. While reviewing the 

properties of conventional Hensel codes, we discussed the 

opportunities of exploring secret parameters and the 

challenge of calculating the inverse map of a Hensel code 

without satisfying minimum requirements established in the 

literature. We showed how the notion of g-adic numbers can 

be useful to enable the combination of meaningless and 

meaningful data in the same partition, so we add a 

probabilistic feature to secret Hensel codes. We presented 

worked examples to demonstrate the homomorphic 

operations over encoded data and provided insights of how 

our construction can serve real-world applications, alongside 

a working code that implements our idea. Our solution can be 

extended to g-adic numbers of arbitrarily many k digits (the 

involved number of prime numbers). Not only we do not 

expect any significant loss in performance but further 

investigation might reveal an escalation in hardness by a 

factor of k. The same mathematical foundation used in our 

construction can be extended in order to provide other 

homomorphic solutions including parallel / distributed 

computation, multiparty computation and, by properly 

managing secret components within our scheme, a variety of 

security protocols. 
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