

Abstract—The primary focus of our project was to

investigate and build the distributed architecture of a mobile
GIS (geographic information system) application. The
purpose of this application would be for displaying useful
information on a college campus based on the specific
geographic location of our user. Information could include
things such as location based events, maps, or other pertinent
information that our user may find helpful or informative. A
database design that offered acceptable levels of flexibility,
ease of use, and quick deployment was explored and
ultimately NoSQL MongoDB was chosen. We aimed to
implement a database schema specifically geared towards
storage of geographic data and MongoDB’s flexible schema
design fulfilled that requirement. Through the use of
MongoDB we also aimed to investigate the tradeoffs of using
NoSQL instead of SQL in regards to querying performance
and ease of design/development. We explored modern
technologies to implement geographical objects (polygons,
points, polylines) that were to contain real-time information
about geographical objects around our user (buildings, floors,
classrooms). And we implemented a Node.js server to retrieve
data from our MongoDB according to our user’s current
location and then handle that GIS information using the
Google Maps API. Our project brought us to the conclusion
that for the purposes of easy scalability, quick startup
development, and ease of creating flexible data models NoSQL
databases like MongoDB were preferable for our project over
more conventional SQL databases [1]. In addition, we proved
out the usefulness of a GIS application geared towards college
students to provide useful campus information based on the
student’s location.

Index Terms—GIS, MongoDB, node.js, NoSQL.

I. INTRODUCTION
This project was undertaken to explore the possible

benefits of a GIS application geared towards college
campuses where the application’s aim would be to provide
easy and accessible location based information to students
on the campus such as events, maps, or other pertinent
information. We also wished to explore NoSQL databases
and their use with GIS information as well as their
performance compared to more traditional SQL databases

Manuscript received August 7, 2017; revised November 14, 2017.
The authors are with School of Computer Science, Kean University,

Union, NJ 07083, USA (email: rodrjon1@kean.edu, malgapoa@kean.edu,
quickja@kean.edu, chuang@kean.edu).

we were familiar with. What resulted from this project was
a practical GIS based application for our campus. Our
application tracks our user’s current location, and when our
user enters a predefined polygon structure, such as a
building stored in our database, our application will then
display information relevant to that building to our user.
This information could be customized to be something as
broad as a building wide event or as specific as a workshop
being hosted on a particular floor in a particular room.

We elected to use NoSQL, specifically MongoDB, over
a more common SQL database for our backend due to the
scalability and performance advantages inherent to NoSQL
databases [2]. We also wished to explore NoSQL databases
in order to gain a better understanding of their benefits and
tradeoffs when used in development versus the more
traditional SQL database that we were already familiar with.
Due to the ever-rising popularity of NoSQL databases [3]
we felt it was important to leverage the advantages of this
relatively new technology for the benefit of our application.
Due to our application’s use case being for a college
campus and the ever-changing layout of buildings on
college campuses we wanted the flexibility of a NoSQL
database to store our building location information. We felt
that NoSQL would offer the greatest ease of future
revisions to our data models as the campus changed over
time. To further ease of use we also constructed a web-
based administrative interface for adding information to our
MongoDB. Our final application flow resulted in being a
mobile application for displaying geo-based information to
our users, a web-based administrative interface for adding
information to our MongoDB for display to users, and a
MongoDB sitting between them to handle the data.

II. DESIGN AND ARCHITECTURE
The two main interfaces of our application are an

administrative web application for adding geo-based events
to our database and a mobile user application for displaying
those events to our users. These two interfaces interact with
each other via MongoDB, which handles the data between
them. In fig. 1 a diagram of the server architecture is
displayed. Both our mobile and web applications were
written in AngularJS and Node.js. In order to deploy our
web application for development purposes we elected to

Distributed Architecture of Mobile GIS Application Using
NoSQL Database

Jonathan Rodriguez, Anthony Malgapo, Jacob Quick, and Chung-yu Huang

doi: 10.18178/ijiee.2017.7.6.681

International Journal of Information and Electronics Engineering, Vol. 7, No. 6, November 2017

156

run it using gulp, an automation toolkit [4]. Should the
application ever move into a production environment we
would explore other options for deploying our application.
AngularJS, Node.js and gulp are all housed on our
application server Yoda, which handles everything aside
from our database. MongoDB is hosted on our database
server Vader. We elected to split our database from our
frameworks/utilities in order to reduce resource contention
between the entities. The servers themselves are running on
the Linux distribution CentOS [5]. We choose CentOS for
our servers due to its free and open source nature that we
found to be very desirable for our needs in development.

Fig. 1. Server architecture.

III. FRONT-END
The front-end has two components: Mobile Application

and Web Application.

A. Mobile Application
It was the aim of our mobile application to provide an

interface for interacting with and viewing geo-based event
information for our user’s, in our use case, college students
on our campus. The mobile application provides the GUI
(graphical user interface) for our users to view a map of
their current location as well as see events pertaining to
their current location, for example events pertaining to the
student center on our campus should the student be within
the student center’s polygon. The mobile application tracks
the user’s GPS location via their phone’s current location.
These coordinates are then compared against the building
polygon coordinates in our MongoDB. Once our user
crosses the threshold of a polygon, in our case a building
polygon, events related to that building are displayed to the
user. Furthermore, once a user arrives on a certain floor of
the building events pertaining just to that floor will be
shown. The user’s Z coordinate (height) is used to
determine what floor they’re on.

The front-end framework used for the mobile application
was AngularJS along with the Google Maps API for
handling any geographic information passed to the
application, such as the coordinates that define our building
polygons and tracking of the users location. Below in Fig. 2
a screenshot of the GUI is provided which shows an event
and the user displayed on a Google map next to a polygon.
In this particular example the building is the Computer
Science building on our campus and the user is being
displayed event information about an Introduction to
Programming Session being hosted at the building at
3:45pm. The interface makes note that the event is not yet
active. We strove to keep the layout of the mobile
application as simple and as user friendly as possible. Only
the information that matters to our user is displayed,
namely their position on the map and any events taking
place at their current location. For future expansion on the
mobile application, features such as saving events to an in-
app favorites folder and the ability to automatically add
events to the built in calendar of the user’s phone would be
desirable in order to make the application more production
ready.

Fig. 2. End user mobile application.

B. Web Application
Our web application’s job was to provide an

environment for system administrators to enter event
information into the MongoDB using an easy to use form
that could be used by any faculty member assigned to a
systems administrator role for their particular department.
We elected to create a GUI for system administration
instead of relying on database administrators entering new
information manually as the overall goal of our application
was the widespread use across our campus. Assigning a
database administrator to enter all events for all

International Journal of Information and Electronics Engineering, Vol. 7, No. 6, November 2017

157

departments seemed impractical, where with this GUI
anyone could enter information for an event in his or her
department. Events entered into the form would be
displayed to our mobile users. The web application allows
our system administrators to pick a date, time, building,
floor and room for the event they are entering as well as
being able to enter a title and provide information about the
event for the user to see. The web application also displays
all events currently in the database to our administrators.
This was in order to provide a simple means of giving
system administrators the resources they needed to prevent
them from entering duplicate events into the database and
also to provide a means for scheduling events without
conflicts. In Fig. 3 a sample event is shown being entered
into the event data form. Following in Fig. 4 the table of
events currently in the database is shown, with the event
from Fig. 3 being displayed.

Fig. 3. Event data form.

Fig. 4. Database events display.

Our web application, like our mobile application, was

built in AngularJS and specifically for the web application
the rdash-angular dashboard (an angular implementation of
the RDash admin dashboard) was used as a base to build
our dashboard up from [6]. The majority of the default
functionality of the RDash admin dashboard was cleaned
out and a custom form and database display table were

created to better fit the needs of our use case. What was left
from the initial RDash admin dashboard was the styling
and sidebar. In Fig. 5 the home page of our application is
shown along with the RDash styling. The name of our
application SKIIwalker-web is an acronym for Simple
Kean Interactive Information.

Fig. 5. Dashboard home.

For future expansion of the web application, should the

project move into a production environment, an interface
for mapping and creating new polygons would be planned
in order to offer full administration of the application from
the web-app. As of now the only means for adding new
polygons to the MongoDB is for a database administrator
to manually create the polygon and pass the coordinates
into the database. In a production environment this would
be unacceptable, but for the purposes of this pilot program
we deemed fleshing out a polygon creation GUI to be
unnecessary as we are only using a single polygon for
piloting the program within our department.

IV. BACK-END
The back-end has two components: Database and

Application Server.

A. Database
Along with proving out the usefulness of a GIS mobile

application the other aim of our project was to explore the
use of NoSQL databases in development. In order to store
our geographic and event information MongoDB was
chosen. Due to the flexibility of the JSON (JavaScript
Object Notation) [7] documents MongoDB uses to store
data we felt that it would be the best choice for our
program as flexibility, ease of development and the ability
for easy future expansion of data models was a requirement.
MongoDB also offers specific data models geared towards
geographic data, which was a required trait for the database

International Journal of Information and Electronics Engineering, Vol. 7, No. 6, November 2017

158

we were going to use for development due to the nature of
the data we were storing. The JSON documents MongoDB
uses are a human and machine-readable standard that
facilitates data interchange and in the case of MongoDB
BSON, a binary derivative of JSON, is used as it offers
both the flexibility of JSON with the speed of a lightweight
binary format. Though for clarity we will continue to refer
to the documents MongoDB uses as JSON as the BSON
documents are only used behind the scenes when encoding
the JSON [8].

Fig. 6. NoSQL GeoJSON document describing a building and its

coordinates.

The layout of buildings is constantly in flux at a college
campus due to class changes each semester or even
building renovations and new additions, with the flexibility
offered by MongoDB’s JSON documents we are able to
quickly and easily update these documents should the
information for a building change. Such as what
department is located in that building, or what department’s
classes primarily take place in that building. In addition to
that we have the quick flexibility to add new buildings to
the database as they’re built and even modify our entire
schema to accommodate these new additions should that
need arise. Something like this just wouldn’t be possible
with traditional SQL databases, at least not in a timely
fashion [2].

Since we’re using a college campus as our pilot program
for the application we felt it was necessary that our
database provide the flexibility and ease of use that
MongoDB offers. Additionally, when compared to
traditional SQL databases there were no noticeable
degradations in typical database querying speeds, this
allowed us the freedom of the flexible data modeling that
NoSQL offers without having to sacrifice the traditional
reliability of querying an SQL database in a timely manner
[9]. Fig. 6 is an example of a typical JSON document used
to store information in MongoDB, you can see in this
document we are defining the name of the building,
information about that building, and all the important GIS
information, in this case coordinates, which define the
polygon of the building for our mapping API to take care of.

B. Application Server
Our server environment is split into two different

systems, we have a database management system housing
solely our MongoDB, this is run on our Vader server, and
we host our front-end frameworks and utilities, like Node.js,
AngularJS, and gulp on our Yoda server. Both of these
servers run the open source CentOS Linux distribution.

The database management system (MongoDB – Vader
Server) is separated from the rest of the environment to
eliminate the resource contention between the application
and the database, and to increase security by removing the
database from the Application Server (Yoda). Moving
forward with this approach, application and database do not
contend for the same server resources. This, we found,
overall leads to better performance and easier development.

V. CONCLUSIONS
We found in our research that for our purposes the

flexibility offered by a NoSQL database, in our case
MongoDB, proved to be more advantageous over the more
common SQL database. As well as offering the flexibility
of JSON documents MongoDB [10] also offered easy
scalability and schema change should we need to expand
the database in the future for more buildings, different
layouts, or different locations entirely such as different
college campuses or even museums, to offer a new use case.

Overall this research opportunity has allowed us to better
understand the practical uses of GIS information and its
relation to providing users with real time information about
their environment. We have constructed a proof of concept
mobile application that utilizes GIS information to help
users find relevant information based on their location and
display it to them in a way that is quick and convenient. In
addition to that we effectively explored NoSQL technology
and its benefits and tradeoffs for our application. It is our
hope that in the future this application will be improved
upon to make it production ready for use on our campus
full time, as well as on other campuses and in similar
situations where such an application would be useful.

REFERENCES
[1] J. Han, E. Haihong, G. Le, and J. Du, “Survey on NoSQL database,”

in Proc. 2011 6th International Conference on Pervasive Computing
and Applications, Port Elizabeth, 2011, pp. 363-366.

[2] MongoDB and MySQL. [Online]. Available:
https://www.mongodb.com/compare/mongodb-mysql

[3] S. Venkatraman, K. Fahd, S. Kaspi, and R. Venkatraman, “SQL
Versus NoSQL movement with big data analytics,” International
Journal of Information Technology and Computer Science (IJITCS),
vol.8, no.12, pp. 59-66, 2016.

[4] Gulp automation toolkit. [Online]. Available:
https://github.com/gulpjs/gulp

[5] CentOS linus distribution. [Online]. Available :
https://wiki.centos.org

[6] RDash rdash-angular dashboard. [Online]. Available:
https://github.com/rdash/rdash-angular

International Journal of Information and Electronics Engineering, Vol. 7, No. 6, November 2017

159

[7] L. Bassett, Introduction to Javascript Object Notation: A To-the-
Point Guide to JSON, O'Reilly Media, 2015.

[8] JSON and BSON. [Online]. Available:
https://www.mongodb.com/json-and-bson

[9] Z. Parker, S. Poe, and S. V. Vrbsky, “Comparing NoSQL
MongoDB to an SQL DB,” Proceedings of the 51st ACM Southeast
Conference (ACMSE '13), ACM, Article 5, New York, NY, USA,
April 4-6, 2013.

[10] G. Fourny, M. Brantner, and F. Cavalieri, “JSONiq: The SQL of
NoSQL,” CreateSpace Independent Publishing Platform, 2013.

Jonathan Rodriguez was a senior student at Kean
University in Union, New Jersey and graduated in
2017 with a BS in computer science. He is currently a
software developer in the financial industry working
on legacy applications and next generation architecture.

Anthony Malgapo graduated from Kean University
with a B.S. in computer science information systems
and was a senior at the time of writing this paper. He
is currently a systems engineer for an IT firm mainly
working on infrastructure architecture and network
monitoring.

Jacob Quick was a senior student at Kean University
in Union, New Jersey and graduated in 2017 with a
BS in computer science. He is currently working as a
software developer specializing in database design
and administration in both NoSQL and SQL as well
as back-end web development.

Ching-yu Huang is an assistant professor of the
Department of Computer Science at Kean University
since September 2014. Dr. Huang received a Ph.D. in
computer & information science from New Jersey
Institute of Technology, Newark, New Jersey, USA.

Prior to joining Kean University, Dr. Huang had
more than 16 years of experience in the industry and

academics in software development and R&D in bioinformatics. His
research focuses SNP genotype calling and cluster detection; image
processing and pattern recognition, especially in microarray and
fingerprint; geotagged images and location information reconstruction;
database application development; data processing automation; E-learning,
educational multimedia, methodology, and online tools for secondary
schools and colleges. Dr. Huang has more than 40 publications in journals
and conferences and more than 20 presentations in workshops and invited
lectures.

International Journal of Information and Electronics Engineering, Vol. 7, No. 6, November 2017

160

	I. Introduction
	II. Design and Architecture
	III. Front-End
	A. Mobile Application
	B. Web Application

	IV. Back-end
	A. Database
	B. Application Server

	V. Conclusions
	References

